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Abstract. A theorem of Viana says that almost all cocycles over any hyperbolic system have nonvanishing Lyapunov
exponents. In this note we extend this result to cocycles on any noncompact classical semisimple Lie group.

1. Introduction

Lyapunov exponents are ubiquitous in differentiable dynamics [8], control theory [16], one-dimensional Schrödinger
operators [14], random walks on Lie groups [18], among other fields. Let us recall the basic definition. Let
pM, µq be a probability space, and let f : M Ñ M be a measure-preserving discrete-time dynamical system. Let
A : M Ñ Rdˆd be a at least measurable matrix-valued map. The pair pA, f q is called a linear cocycle. We form the
products:

Apnqpxq B Ap f n´1pxqq ¨ ¨ ¨ Ap f pxqqApxq . (1)
Let }¨} be any matrix norm, and assume that log` }A} is µ-integrable. The (top) Lyapunov exponent of the cocycle
is

λ1pA, f , xq B lim
nÑ8

1
n

log
›

›Apnqpxq
›

›, (2)

which by the subadditive ergodic theorem is well-defined (possibly ´8) for µ-almost every x, and is independent
of the choice of norm. If µ is ergodic, then the Lyapunov exponent is almost everywhere equal to a constant, which
we denote by λ1pA, f , µq.

The Lyapunov exponent is a very subtle object of study. Let us explain the type of question we are interested
in. Consider maps A taking values in the group SLpd,Rq. In that case, the Lyapunov exponent is nonnegative,
and it is reasonable to expect that it should be positive except in some degenerate or fragile situations. As a
result in this direction, Knill [24] proved that for any base dynamics p f , µq where the measure µ is ergodic and
non-atomic, λ1pA, f , µq ą 0 for all maps A in a dense subset of the space L8pM,SLp2,Rqq. Still in d “ 2, this
result was extended to virtually any regularity class (continuous, Hölder, smooth, analytic) by Avila [2]. The case
d ą 2 remains unsolved, though similar results have been obtained by Xu [28] for some other matrix groups as the
symplectic groups. In general, the sets of maps where the Lyapunov exponents are positive are believed to be not
only dense, but also “large” in a probabilistic sense (see [2]). However, in low regularity as L8 or C0, these sets
can be “small” in a topological sense; indeed they can be locally meager [9, 10].

Historically, the first case to be studied was random products of i.i.d. matrices, which fits in the general setting
of linear cocycles by taking p f , µq as the appropriate Bernoulli shift on SLpd,RqZ, and the matrix map A depending
only on the zeroth coordinate. Furstenberg showed that that the Lyapunov exponent is positive under explicit mild
conditions (Theorem 8.6 in [19]). Finer results were later obtained (still in the i.i.d. case) by Guivarc’h and Raugi
[22], Gol’dsheid and Margulis [21], among others.

As expressed in the work of Viana and collaborators [12, 13, 5, 27, 6, 7], the philosophy of random i.i.d. products
of matrices in Ledrappier’s seminal paper [25] can be adapted to other contexts, where Bernoulli shifts are replaced
by more general classes of dynamical systems with hyperbolic behavior, at least under certain conditions on the
maps A. A landmark result, proved by Viana in [27], can be stated informally as follows: If the dynamics p f , µq is
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nonuniformly hyperbolic (and satisfies an additional technical but natural hypothesis) then, in spaces of sufficiently
regular (at least Hölder) maps A : M Ñ SLpd,Kq for K “ R or C, positivity of the Lyapunov exponent occurs on
a set which is large in both a topological and in a probabilistic sense.

In this note we show that the groups SLpd,Rq and SLpd,Cq in Viana’s theorem can be replaced by any non-
compact classical semisimple group of matrices, as for example the symplectic groups, pseudo-unitary groups, etc.
This provides an answer to a question of Viana [27, Problem 4].

Let us mention that when f is quasiperiodic (and so lies in a region antipodal to hyperbolicity in the dynamical
universe), the study of Lyapunov exponents forms another huge area of research: see for instance [4, 17] and
references therein.

Finally, we note that for derivative cocycles (i.e., where A “ D f ) very few general results are known, except in
low topologies [9, 10, 3].

2. Precise setting

In this section we recall some basic notions about multiplicative ergodic theory, and then state our results. The
reader is referred to [8, 27] for more details and references.

2.1. Lyapunov exponents. The top Lyapunov exponent of a cocycle pA, f q was defined in (2). In general, we
define Lyapunov exponents λ1pA, f , xq ě λ2pA, f , xq ě ¨ ¨ ¨ ě λdpA, f , xq by

λipA, f , xq B lim
nÑ8

1
n

logσipApnqpxqq ,

where σip¨q denotes the i-th singular value.

2.2. Hyperbolic measures and local product structure. Let f : M Ñ M be a C1`α diffeomorphism of a
compact manifold M, and let µ be a invariant Borel probability measure. Suppose that µ is hyperbolic, that is,
the Lyapunov exponents of the derivative cocycle D f are all different from zero at µ-almost every point x. So, by
Oseledets theorem, we can split the tangent bundle TxM as the sum of the subspaces Eu

x and Es
x corresponding to

positive and negative exponents, respectively.
Given a hyperbolic probability measure µ, Pesin’s stable manifold theorem (see e.g. [8]) says that, for µ-almost

every x, there exists a C1-embedded disk Ws
locpxq (local stable manifold at x) such that TxWs

locpxq “ Es
x, it is

forward invariant f pWs
locpxqq Ă Ws

locp f pxqq and the following holds: given 0 ă τx ă |λ1`dim Eu
x pD f , f , xq|, there

exists Kx ą 0 such that dp f npyq, f npzqq ď Kx e´nτx dpy, zq for every y, z P Ws
locpxq. Local unstable manifolds

Wu
locpxq are defined analogously using Eu

x and f´1.
Moreover, since local invariant manifolds and the constants above vary measurably with the point x one can

select hyperbolic blocks HpK, τq in such a way that Kx ď K and τx ě τ for all x P HpK, τq, the local manifolds
Ws

locpxq and Wu
locpxq vary continuously with x P HpK, τq; moreover, µpHpK, τqq Ñ 1 as K Ñ 8 and τ Ñ 0. In

particular, if x P HpK, τq and δ ą 0 is small enough, then for every y, z P Bpx, δq X HpK, τq, the intersection
Wu

locpyq XWs
locpzq is transverse and consists of a unique point, denoted ry, zs.

For each x P HpK, τq, define sets:

Nu
x pδq B trx, ys P Wu

locpxq : y P HpK, τq X Bpx, δqu ,

N s
xpδq B try, xs P Ws

locpxq : y P HpK, τq X Bpx, δqu .

Let Nxpδq be the image of Nu
x pδq ˆ N

s
xpδq under the map r¨, ¨s. This is a small “box” neighborhood of x in the

blockHpK, τq, and (reducing δ if necessary) the following map is a homeomorphism:

Υx : Nxpδq Ñ Nu
x pδq ˆN

s
xpδq

y ÞÑ prx, ys, ry, xsq

Definition 2.1 ([27, p. 646]). The hyperbolic measure µ has local product structure if for every pK, τq, every small
δ ą 0 as before, and every x P HpK, τq, the measure µ |Nxpδq is equivalent to the product measure µu

x ˆ µs
x, where

µi
x denotes the conditional measure of pΥxq˚pµ |Nxpδqq on N i

xpδq, for i P tu, su.
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2.3. Space of cocycles. The relevant functional spaces of linear cocycles for our subsequent discussion are defined
as follows. Let G be a Lie subgroup of GLpd,Cq, let M be a Riemannian compact manifold M, and let pr, νq P
N ˆ r0, 1s ´ tp0, 0qu. Let Cr,νpM,Gq denote the set of maps A : M Ñ G of class Cr such that DrA is ν-Hölder
continuous if ν ą 0. We equip this set with the topology induced by the distance:

dr,νpA, Bq B sup
0ď jďr

}D jpA´ Bqpxq} ` sup
x,y

}DrpA´ Bqpxq ´ DrpA´ Bqpyq}
dpx, yqν

,

where the last term is omitted if ν “ 0. Then Cr,νpM,Gq is a Banach manifold.

2.4. Statement of the results. LetK be either R or C, and let d ě 2. Let G be aK-algebraic subgroup of SLpd,Cq,
i.e., a group of complex d ˆ d matrices of determinant 1, defined by polynomial equations with coefficients in K.
Denote G B GX SLpd,Kq. Henceforth we will assume the following properties:

(1) G is connected (or equivalently, G is irreducible as an algebraic set);
(2) G is semisimple (or equivalently, G is semisimple);
(3) G is noncompact;
(4) G acts irreducibly on Kd, that is, the sole subspaces V Ă Kd invariant under the whole action of G are the

trivial subspaces V “ t0u and V “ Kd.
Our assumptions are satisfied by all noncompact classical groups G, that is, SLpd,Kq for d ě 2, SLpn,Hq »
SU˚p2nq, Sppn,Kq, Sppn,mq for n,m ě 1, SOpm, nq for m, n ě 1, m`n ě 3, SUpm, nq for m, n ě 1, and SO˚p2nq
for n ě 2.

The following result is exactly Theorem A in [27] when G “ SLpd,Kq:

Theorem A. Let G be a group of matrices satisfying the hypotheses above. Let f be a C1`α-diffeomorphism
of a compact manifold M. Let µ be a f -invariant ergodic hyperbolic non-atomic probability measure with local
product structure. Let pr, νq P N ˆ r0, 1s ´ tp0, 0qu. Then there exists an open and dense subset G of Cr,νpM,Gq
such that for any A P G , the cocycle pA, f q has at least one positive Lyapunov exponent at µ-a.e. point. Moreover,
the complement of G in Cr,νpM,Gq has infinite codimension.

The last statement means that the complement of G is locally contained in Whitney stratified sets (see [20]) of
arbitrarily large codimension. In particular, G is large in a very strong probabilistic sense.

Arguing exactly as in [27, p. 676], we obtain the following consequence in the non-ergodic case:

Corollary 2.2. Let G be a group of matrices satisfying the hypotheses above. Let f be a C1`α-diffeomorphism
of a compact manifold M. Let µ be a f -invariant ergodic hyperbolic non-atomic probability measure with local
product structure. Let pr, νq P N ˆ r0, 1s ´ tp0, 0qu. Then there exists a residual subset R of Cr,νpM,Gq such that
for any A P G , the cocycle pA, f q has at least one positive Lyapunov exponent at µ-a.e. point.

3. Proofs

Here we review some intermediate results from [27] in Subsections 3.1 and 3.2, then we recall some algebraic
facts in Subsection 3.3, and finally we prove Theorem A in Subsection 3.4.

3.1. Holonomies. In this and in the next subsection, we assume that f is a C1`α-diffeomorphism of a Riemannian
compact manifold M preserving a non-atomic hyperbolic measure µ with local product structure, and that A P

Cr,νpM,SLpd,Kqq for some pr, νq P Nˆ r0, 1s ´ tp0, 0qu (and K “ R or C).
A key insight from [27] is that the vanishing of Lyapunov exponents of the cocycle pA, f , µq implies the existence

of a dynamical structure called stable and unstable holonomies.
More concretely, let f be a C1`α-diffeomorphism of a Riemannian compact manifold M preserving a non-

atomic hyperbolic measure with local product structure. Let A P C0pM,SLpd,Kqq be a continuous linear cocycle.

Definition 3.1. Given N ě 1 and θ ą 0, let DApN, θq denote the set of points x P M satisfying:
k´1
ź

j“0

›

›ApNqp f jNpxqq
›

›

›

›ApNqp f jNpxqq´1
›

› ď ekNθ for all k P N.
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We say that O is a holonomy block for A if it is a compact subset of HpK, τq XDApN, θq for some constants K, τ,
N, θ satisfying 3θ ă τ.

By [27, Corollary 2.4], if all Lyapunov exponents of pA, f q vanish at µ-almost every point then there exist
holonomy blocks of measure arbitrarily close to 1.

By [27, Proposition 2.5], the limits

Hs
A,x,y “ Hs

x,y B lim
nÑ`8

Apnqpyq´1Apnqpxq and Hu
A,x,z “ Hu

x,z B lim
nÑ´8

Apnqpzq´1Apnqpxq ,

called stable and unstable holonomies, exist whenever x belongs to a holonomy block O, y P Ws
locpxq and z P

Wu
locpxq. These holonomy maps depend differentiably on the cocycle:

Proposition 3.2 ([27, Lemma 2.9]). Given a periodic point p in a holonomy block and points y P Ws
locppq and

z P Wu
locppq, the maps B ÞÑ Hs

B,p,y and B ÞÑ Hu
B,z,p from a small neighborhood U of A to SLpd,Cq are C1, with

derivatives:

BBHs
B,p,y : 9B ÞÑ

8
ÿ

i“0

Bpiqpyq´1rHs
B, f ippq, f ipyqBp f ippqq´1 ¨ 9Bp f ippqq (1)

´ Bp f ipyqq´1 9Bp f ipyqqHs
B, f ippq, f ipyqs ¨ Bpiqppq

BBHu
B,z,p : 9B ÞÑ

8
ÿ

i“1

Bp´iqppq´1rHu
B, f´ipzq, f´ippqBp f´ipzqq 9Bp f´ipzqq (2)

´ Bp f´ippqq 9Bp f´ippqqHu
B, f´ipzq, f´ippqs ¨ Bp´iqpzq

Remark 3.3. In this statement, it is implicit the fact ensured by [27, Corollary 2.11] that the same holonomy block
works for all B P U.

Suppose Oi, where i “ 1, . . . , l, are holonomy blocks of p f , Aq containing horseshoes Hi associated to pe-
riodic points pi P Oi of minimal periods κi and some homoclinic points zi P Oi of pi, say zi P Wu

locppiq and
f qipziq P Ws

locppiq, qi ą 0, such that pi, zi P supppµ | Oi X f´κipOiqq. By the remark above we know there is a
neighborhoodU of A such that all the same holonomy blocks Oi (hence pi, zi, qi) still work for any B P U. Then
we have the following important lemma:

Lemma 3.4. The map

Φ : U Ñ G2l

B ÞÑ pg1,1pBq, . . . , gl,1pBq, g1,2pBq, . . . , gl,2pBqq

is a submersion at every B P U, where

gi,1pBq B Bpκiqppiq and gi,2pBq B Hs
B, f qi pziq,pi

˝ Bpqiqpziq ˝ Hu
B,pi,zi

(3)

Proof. Fix Vzi , Vpi some neighborhoods of pi and zi. Without loss of generality we could assume Vzi ,Vpi , i “
1, . . . , l are small enough such that

f nppiq X Vz j “ H, @i, j, n

f nppiq X Vp j “ H except if i “ j and κi|n

f npziq X Vz j “ H except if i “ j and n “ 0 (4)

We claim that the derivative of map Φ is surjective at every point of U, even when restricted to the subspace
of tangent vectors 9B supported on

Ť

i Vpi Y
Ť

i Vzi . In fact for every B P U, for tangent vectors 9B supported on
Ť

i Vpi Y
Ť

i Vzi we will prove that the derivative of Φ has the following lower triangular form:

BBΦT p 9Bq “ pBBg1,1p 9Bq, . . . , BBgl,1p 9Bq, BBg1,2p 9Bq, . . . , BBgl,2p 9BqqT “
ˆ

BΦ1,1 0
˚ BΦ2,2

˙

¨

ˆ

9Bp
9Bz

˙

(5)

where 9Bp “ p 9Bpp1q, . . . , 9Bpplqq
T , 9Bz “ p 9Bpz1q, . . . , 9Bpzlqq

T and BΦ1,1, BΦ2,2 are two diagonal surjective linear
maps.
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By (4), we easily get

BBpgi,1p 9Bqq “

#

gi,1pBq ¨ Bppiq
´1 ¨ 9Bppiq, if suppp 9Bq Ă Vpi ,

0, if suppp 9Bq Ă Vp j , j , i or Vz j , 1 ď j ď l.
(6)

By gi,2’s definition,

BBpgi,2p 9Bqq “ BBHs
B, f qi pziq,pi

p 9Bq ¨ Bpqiqpziq ¨ Hu
B,pi,zi

(7)

` Hs
B, f qi pziq,pi

¨ BBBpqiqpziqp 9Bq ¨ Hu
B,pi,zi

` Hs
B, f qi pziq,pi

¨ Bpqiqpziq ¨ BBHu
B,pi,zi

p 9Bq

By (1), (2) and (4), for any j,

BBHs
B, f qi pziq,pi

p 9Bq “ BBHu
B,pi,zi

p 9Bq “ 0 if suppp 9Bq Ă Vz j (8)

and

BBBpqiqpziqp 9Bq “

#

Bpqiqpziq ¨ Bpziq
´1 ¨ 9Bpziq if suppp 9Bq Ă Vzi ,

0, if suppp 9Bq Ă Vz j , j , i.
(9)

Combine (7), (8) and (9) we get

BBpgi,2p 9Bqq “

#

Hs
B, f qi pziq,pi

¨ Bpqiqpziq ¨ Bpziq
´1 ¨ 9Bpziq ¨ Hu

B,pi,zi
if suppp 9Bq Ă Vzi ,

0, if suppp 9Bq Ă Vz j , j , i.
(10)

Then by (10), (6) and invertibility of Hs,u and B, we get (5). As explained before, Lemma 3.4 follows. �

3.2. Disintegrations. Let fA denote the induced projectivized cocycle, that is, the skew-product map on M ˆ

Pd´1pKq defined by px, rvsq ÞÑ p f pxq, rApxqvsq.
By compactness of the projective space, the projectivized cocycle fA always has invariant probability measures

m on M ˆ Pd´1pKq projecting down to µ on M. Any such measure m can be disintegrated (in an essentially
unique way) into a family of measures mz on tzu ˆ Pd´1pKq, z P M, in the sense that mpCq “

ş

mzpC X ptzu ˆ
Pd´1pKqqq dµpzq for all measurable subsets C Ă M ˆ Pd´1pKq: see [11, Section 10.6].

As explained in Subsection 2.2, p f , µq has hyperbolic blocks HpK, τq of almost full µ-measure. Given a holo-
nomy block O of positive µ-measure inside a hyperbolic blockHpK, τq, δ ą 0 sufficiently small (depending on K
and τ) and a point x P supppµ | Oq, we denote by NxpO, δq, Nu

x pO, δq and N s
xpO, δq the subsets of Nxpδq, Nu

x pδq
and N s

xpδq obtained by replacingHpK, τq by O in the definitions.
The next result extracted from [27, Proposition 3.5] says that the disintegration behaves in a rigid way when all

Lyapunov exponents of the cocycle vanish. For simplicity, the action of a linear map L on the projective space is
also denoted by L.

Proposition 3.5. Suppose that all Lyapunov exponents of pA, f q vanish at µ-almost every point.
If O is a holonomy block of positive µ-measure, δ ą 0 is sufficiently small and x P supppµ | Oq, then every fA-

invariant probability measure m on Mˆ Pd´1pKq projecting down to µ on M admits a disintegration tmz : z P Mu
such that the function supppµ | NxpO, δqq Q z ÞÑ mz is continuous in the weak˚ topology and, moreover,

pHs
y,zq˚my “ mz “ pHu

w,zq˚mw

for all y, z,w P supppµ | NxpO, δqq with y P Ws
locpzq and w P Wu

locpzq.

We shall exploit the rigidity condition in the previous proposition through the following result extracted from
[27, Proposition 4.5] ensuring the existence of holonomy blocks containing periodic points and some of its homo-
clinic points when all Lyapunov exponents vanish in a set of positive measure.

Proposition 3.6. Suppose that all Lyapunov exponents of pA, f q vanish at µ-almost every point. Then for any
l ą 0, there exists holonomy blocksOi containing horseshoes Hi associated to periodic points (with different orbits)
pi P Oi of period πppiq and some homoclinic points zi P Oi of pi such that pi, zi P supppµ | Oi X f´πppiqpOiqq.
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3.3. Some facts about linear algebraic groups. Recall that G is an algebraic group of matrices satisfying the
hypotheses listed at Subsection 2.4. In this subsection we collect some algebraic facts that we will use.

The following property, shown by Breuillard [15, Lemma 6.8] (see also [1, Lemma 7.7]) only needs the fact
that G is algebraic and semisimple (hypothesis (2)):

Proposition 3.7. There exists a proper algebraic subvariety V Ă G ˆG such that any pair of elements pg1, g2q P

pG ˆGq ´ V generates a Zariski dense subgroup of G.

The following is Proposition 3.2.15 in [29], and uses our hypotheses (1), (3), and (4):

Proposition 3.8. Let m be a probability measure on the projective space Pd´1pKq, and let Gm be the set of elements
of G whose projective actions preserve m. Then:

(i) Gm is compact, or
(ii) Gm is contained in a proper algebraic subgroup of G.

Remark 3.9. Actually Gm is an amenable subgroup, by Theorem 2.7 in [26], but we will not need this fact.

Remark 3.10. If K “ R then property (i) in Proposition 3.8 actually implies property (ii). Indeed, by a well-known
fact [23, Proposition 4.6], every compact subgroup of SLpd,Rq preserves a positive definite quadratic form, and in
particular is R-algebraic. 1

Recall that a subset of Rn is called semi-algebraic if it is defined by finitely many polynomial inequalities2, and
the dimension of a semi-algebraic set is the maximal local dimension near regular points (see, e.g., [20]).

Lemma 3.11. Suppose K “ C. Then there is a semi-algebraic set W Ă G ˆG of positive codimension such that
for any pair of elements pg1, g2q P pGˆGq´W, the group they generate is not contained in any compact subgroup
of G.

Proof. Let K be a maximal compact subgroup of G. We think of G as a complexification of K: in particular, the
Lie algebra of G is the tensor product over R of C and the Lie algebra of K, and, a fortiori, dimRpGq “ 2 ¨dimRpKq.

Consider a maximal Abelian subgroup A of G and the corresponding decomposition G “ KAK coming from
the diffeomorphism K ˆ expppq Ñ G where p “

Ť

kPK
Adpkq ¨ a, Adp.q denotes the adjoint action, and a is the Lie

algebra of A. Note that dimRpGq ą dimRpKq ` dimRpAq (as one can infer, for instance, from the Killing-Cartan
classification of simple complex Lie groups via Dynkin diagrams: see, e.g., [23] for more details).

Define Φ : K ˆ Aˆ K ˆ K Ñ G ˆG by Φpk, a, u, vq “ pkaua´1k´1, kava´1k´1q. Note that Φ is a polynomial
map between semi-algebraic sets. Hence, its image W :“ ΦpK ˆ A ˆ K ˆ Kq is a semi-algebraic set (by Tarski-
Seidenberg theorem) of dimension dimRpWq ď dimRpK ˆ Aˆ K ˆ Kq “ pdimRpKq ` dimRpAqq ` 2 ¨ dimRpKq.

Since dimRpGq ą dimRpKq ` dimRpAq and dimRpGˆGq “ 2 ¨ dimRpGq “ dimRpGq ` 2 ¨ dimRpKq, it follows
that dimRpWq ď pdimRpKq ` dimRpAqq ` 2 ¨ dimRpKq ă dimRpG ˆGq.

In summary, W is a semi-algebraic subset of GˆG of positive codimension. Therefore, the proof of the lemma
will be complete once we show that if pg1, g2q P G generates a group contained in a compact subgroup of G, then
pg1, g2q P W. In this direction, we observe that K is a maximal compact subgroup of G, so that if the closure of
the subgroup generated by g1 and g2 is compact, then there exists g P G such that g1, g2 P gKg´1, say g1 “ gxg´1

and g2 “ gyg´1 with x, y P K. On the other hand, the decomposition G “ KAK allows us to write g “ kak1 for
some k, k1 P K and a P A. It follows that

pg1, g2q “ pgxg´1, gyg´1q “ pkapk1xk1´1qa´1k´1, kapk1yk1´1qa´1k´1q “ Φpk, a, u, vq

with k P K, a P A, u “ k1xk1´1 P K and v “ k1yk1´1 P K, i.e., pg1, g2q P W. This completes the proof. �

By combining the previous results, we deduce the following:

Corollary 3.12. There is a semi-algebraic set Z Ă G ˆ G of positive codimension such that no pair of elements
pg1, g2q P pG ˆGq ´ Z admits a common invariant measure on projective space Pd´1pKq.

1These implications fail in the complex case; for example the compact group SUpdq is Zariski-dense in SLpd,Cq.
2I.e., a semi-algebraic set is an element of the smallest Boolean ring of subsets of Rn containing all subsets of the form tpx1, . . . , xnq P R

n :
Ppx1, . . . , xnq ą 0u with P P RrX1, . . . , Xns.
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Proof. If K “ R then we let Z “ V be the proper algebraic subvariety of GˆG described in Proposition 3.7 above.
Otherwise, if K “ C then we let Z “ V YW where W is given by Lemma 3.11.

Now consider a pair of elements pg1, g2q P G ˆ G that admit a common invariant measure m on Pd´1pKq. If
K “ C then pg1, g2q belongs to either W or V , according to which property (i) or (ii) holds in Proposition 3.8. If
K “ R then by Remark 3.10 we know that property (ii) holds, so pg1, g2q P V . �

3.4. Proof of Theorem A. Let G be an algebraic group of matrices satisfying the hypotheses listed at Subsec-
tion 2.4. Let f be a C1`α-diffeomorphism of a compact manifold M. Let µ be a f -invariant ergodic hyperbolic
non-atomic probability measure with local product structure.

Let A P Cr,νpM,Gq be a cocycle whose Lyapunov exponents vanish at µ-almost every point. To prove Theo-
rem A, we only need to prove that for any l ą 0 there exists a neighborhood U Ă Cr,νpM,Gq of A such that the
cocycles inU with vanishing Lyapunov exponents are contained in a Whitney stratified set with codimension ě l.

By Propositions 3.6 and, we could find l holonomy blocks Oi of positive µ-measure containing horseshoes Hi

associated to distinct periodic points pi P Oi, 1 ď i ď l of minimal periods κi, and some homoclinic points zi P Oi

of pi, zi P Wu
locppiq, f qipziq P Ws

locppiq such that pi, zi P supppµ | O X f´κipOiqq and qi ą 0. Moreover the same
Oi, pi, zi, qi work for any B in a small neighborhoodU of A.

Then by Proposition 3.5, for any A1 P U with vanishing Lyapunov exponents, for any 1 ď i ď l the projective
actions of the matrices

gi,1pA1q B A1pκiqppiq and gi,2pA1q B Hs
A1, f qi pziq,pi

˝ A1pqiqpziq ˝ Hu
A1,pi,zi

preserve a common probability measure mpipA
1q on Pd´1pKq. Thus, for any i, the pair pgi,1pA1q, gi,2pA1qq belongs

to the semi-algebraic set Z of positive codimension in G ˆG given by Corollary 3.12. Recall (see [20]) that:
‚ semi-algebraic sets are Whitney stratified;
‚ products of Whitney stratified sets is Whitney stratified and codimensions add;
‚ pre-images of Whitney stratified sets under submersions are Whitney stratified, and codimension is pre-

served.
Therefore by Lemma 3.4 we conclude that all such A1 lie in a Whitney stratified subset of codimension ě l. This
completes the proof. �
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