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Abstract. In this paper we study the centralizer of flows and Rd-actions on

compact Riemannian manifolds. We prove that the centralizer of every C∞

Komuro-expansive flow with non-ressonant singularities is trivial, meaning it

is the smallest possible, and deduce there exists an open and dense subset of

geometric Lorenz attractors with trivial centralizer. We show that Rd-actions
obtained as suspension of Zd-actions are expansive if and only if the same holds

for the Zd-actions. We also show that homogeneous expansive Rd-actions have

quasi-trivial centralizers, meaning that it consists of orbit invariant, continuous
linear reparametrizations of the Rd-action. In particular, homogeneous Anosov

Rd-actions have quasi-trivial centralizer.

1. Introduction

One of the leading problems considered by the dynamical systems community
has been to describe the features of most dynamical systems. Based on the
pioneering works of Peixoto and Smale, the program proposed by Palis in the
nineties has constituted a route guide for a global itemize of the space of dynamical
systems. This program, that proposed the complement of uniform hyperbolicity
as the space of diffeomorphisms that are approximated by those exhibiting either
heteroclinic tangencies or heteroclinic cycles, was carried out much successfully in
the C1-topology, where perturbation tools like the closing lemma, Franks’ lemma,
connecting lemma or ergodic closing lemma are available [27, 16].

In seminal papers, Smale [38, 39] conjectured that most dynamical systems
should have trivial centralizer, a hard problem not yet completely understood.
Given a Cr-diffeomorphism f on a compact manifold M , its Cr-centralizer Zr(f) =
{g ∈ Diff r(M) : f ◦ g = g ◦ f} is a subgroup of Diff r(M), r ≥ 1. In some sense, the
centralizer reflects symmetries of the dynamic which typically should be rare. The
problem of the centralizer is related e.g. with the embedding of maps as time-1 maps
of flows [32] or the problem of differentiability of conjugacies [42]. In the discrete-
time setting some results in the direction of a positive answer to Smale’s conjecture
include: (i) expansive homeomorphisms have discrete centralizers [41], (ii) there are
open and dense subsets of Cr (r ≥ 2) circle diffeomorphisms [21], of C∞-Axiom A
diffeomorphisms with the strong transversality property and a periodic sink [33], of
C∞-Axiom A surface diffeomorphisms with the strong transversality condition [35],
and codimension one hyperbolic attractors of Cr-diffeomorphisms [14] with trivial
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centralizers; (iii) there are open sets of surface Anosov diffeomorphisms whose C0-
centralizer is discrete but not trivial [36]; (iv) on the torus of dimension 2, 3, or
4, the subset of diffeomorphisms with trivial centralizer in the C1 topology has
nonempty interior [4] (v) there exists a C1-residual subset of Diff1(M) with trivial
centralizer [8] and the set of C1-diffeomorphisms with trivial centralizer is not open
and dense [7]; and (vi) there exists a residual subset of certain classes of Cr, r ≥ 1,
partially hyperbolic diffeomorphisms with discrete centralizer [12].

In the time-continuous setting the picture is still much more incomplete. In
opposition to the discrete time setting the centralizer is never discrete. Indeed,
using that the flow commutes with itself, the centralizer of a flow clearly contains
a continuum. Some advances to establish the counterpart of Smale’s conjecture
for Anosov, C-expansive and Axiom A flows with the strong transversality were
obtained in [18], [29], [37] and [23]. Such a description of the centralizer can be
given in terms of the flow or of the generating vector field. However, flows with some
weak hyperbolicity and where singularities accumulated by regular orbits of the flow
have not yet been considered, and this is a first goal of the present work. These
include important classes of flows as three-dimensional C1-robustly transitive flows
with singularities, often referred as singular-hyperbolic flows. These are partially
hyperbolic flows with an invariant splitting in a one-dimensional contracting and a
two-dimensional volume expanding invariant subbundles for the vector field X or
the vector field−X. Any singular-hyperbolic flow without singularities is an Anosov
flow. Hence, if the manifold does not support Anosov flows then the singular set of
a singular-hyperbolic flow is non-empty. Moreover, singular-hyperbolic attractors
include the important classes of examples of geometric Lorenz attractors, introduced
by Afraimovich, Bykov and Shilnikov [1] and Guckenheimer, Williams [15] to model
the chaotic attractor proposed by E. Lorenz [22]. We refer the reader to [2] for
precise definitions and a large account on singular-hyperbolicity.

Our first purpose in the current article is to describe the centralizer of a class
of flows that contains the important classes of geometric Lorenz attractors. These
admit a weak form of expansiveness (the so called Komuro-expansiveness) which
is compatible with the coexistence of regular and singular orbits in the same
transitive piece of the non-wandering set. We prove first that Komuro-expansive
flows have quasi-trivial centralizers: any commuting flow is a continuous linear
reparametrization of the original flow. If, in addition, the singularities satisfy an
(open and dense) non-ressonance condition then the centralizer of such a vector
field X consists of the vector fields of the form cX for some c ∈ R on the closure
of the stable manifolds of the singularities (cf. Theorem A and Corollary A). As
a byproduct of these results we conclude that the orbits of Rd-actions that admit
some expansive element are indeed one-dimensional, a fact that holds e.g. for
Anosov actions (cf. Corollary B). As a second purpose we also obtain a systematic
treatment of the centralizer of expansive Rd-actions. In the case of Rd-actions
that are suspension of Zd-actions, expansiveness is either a common feature or
it fails for both actions (cf. Theorem C). We also prove that the centralizer
of expansive “typical homogeneous” Rd-actions is also reduced to its continuous
reparametrizations. We refer the reader to Theorem B for the precise statement.

This paper is organized as follows. In Section 2 we introduce some definitions
and state the main results of this paper. Section 6 is devoted to present some
examples and a wider discussion and comparison of our results with other notions
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of expansiveness for flows. In Section 3 we study the centralizer of expansive flows
with singularities. The results on the expansiveness properties and centralizer of
Rd-actions are given along Sections 4 and 5.

2. Preliminaries and statement of the main results

2.1. Preliminaries. In this subsection we shall introduce some definitions and
recall some necessary background, with the intention of making the text as self-
contained as possible. Throughout we let M be a compact Riemannian manifold.

2.1.1. Uniform hyperbolicity. Given a Cr-diffeomorphism f on M , r ≥ 1, a set
Λ ⊂M is uniformly hyperbolic if there is a Df -invariant splitting TΛM = Es⊕Eu
and constants C > 0 and λ ∈ (0, 1) so that

‖Dfn(x) |Esx ‖ ≤ Cλ
n and ‖(Dfn(x) |Eux )−1‖ ≤ Cλn

for every x ∈ Λ and n ≥ 1. We refer to TΛM = Es ⊕Eu as the hyperbolic splitting
associated to f and Λ.

Let Per(f) denote the set of periodic points and Ω(f) denote the non-wandering

set of f . A C1-diffeomorphism f is called Axiom A if Per(f) = Ω(f) and Ω(f) is a
uniformly hyperbolic set. The diffeomorphism f is Anosov if the manifold Λ = M
is a hyperbolic set for f .

The natural counterpart for flows is defined as follows. Given a vector field
X ∈ Xr(M), r ≥ 1, let (ϕt)t∈R denote the Cr-flow on M generated by X. Recall
that σ ∈ M is a hyperbolic singularity for X ∈ X1(M) provided X(σ) = 0 and
DX(σ) does not contain any purely imaginary eigenvalue. Furthermore, we say
that a hyperbolic singularity σ for X ∈ X1(M) is non-ressonant if the eigenvalues
α1, . . . , αk ∈ C of DX(σ)|Euσ (resp. the eigenvalues β1, . . . , βm ∈ C of DX(σ)|Esσ )
are all distinct and do not satisfy any relation of the form Re(αi) =

∑
j 6=i njRe(αj)

(resp. Re(βi) =
∑
j 6=i njRe(βj)) for some non-negative integers nj so that∑k

j=1 nj ≥ 2. Observe that since we consider the eigenvalues of stable and unstable
bundles independently, the later corresponds the singularity to be separately non-
ressonant. Furthermore, in this case the ressonance conditions consist of finitely
many algebraic closed equations and, consequently, are satisfied by an open and
dense subset of linear vector fields.

Given a compact (ϕt)t∈R-invariant non-singular set Λ ⊂ M , we say that Λ is
a hyperbolic set for (ϕt)t∈R if there exists a Dϕt-invariant splitting TΛM = Es ⊕
E0 ⊕ Eu so that: (a) E0 is one dimensional and generated by the vector field, (b)
there are constants C > 0 and λ ∈ (0, 1) so that

‖Dϕt(x) |Esx ‖ ≤ Cλ
t and ‖(Dϕt(x) |Eux )−1‖ ≤ Cλt

for every x ∈ Λ and t ≥ 0.
Given a C1-flow ϕ = (ϕt)t we denote by Sing(ϕ) the singularities of ϕ and by

Crit(ϕ) the set of all critical elements, formed by singularities and closed orbits for

the flow ϕ. A flow (ϕt)t is called Axiom A if Crit(ϕ) = Ω(X) and the non-wandering
set Ω(X) is a uniformly hyperbolic set. The flow (ϕt)t is Anosov if Λ = M is a
hyperbolic set.

We say that Φ : Rd×M →M is a Cr-action on a compact Riemannian manifold
M if Φv := Φ(v, ·) : M → M is a Cr diffeomorphism and Φv+u = Φv ◦ Φu for
every v, u ∈ Rd. Following [6], we say that a Cr-action Φ : Rd × M → M on
a compact Riemannian manifold M is an Anosov action if there exists v ∈ Rd
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such that the diffeomorphism Φv admits a continuous DΦv-invariant decomposition
TM = Esv ⊕ TΦ⊕ Euv where TΦ denotes the tangent space to the orbits of Φ and
there are constants C > 0 and λ ∈ (0, 1) so that

‖DΦnv (x) |Esx ‖ ≤ Cλ
n and ‖(DΦnv (x) |Eux )−1‖ ≤ Cλn

for every x ∈M and n ≥ 0. The diffeomorphism Φv is called an Anosov element.
Let F denote the orbit foliation of Φ and let F(x) denote the leaf of the foliation

containing the point x. It follows from [17, Theorem 7.2] that (Φv,F) is a plaque
expansive diffeomorphism: there exists δ > 0 such that if (xn)n∈Z and (yn)n∈Z
are δ-pseudo-orbits preserving F (ie. d(Φv(xn), xn+1) < δ, d(Φv(yn), yn+1) < δ,
Φv(xn) ∈ Fδ(xn+1) and Φv(yn) ∈ Fδ(yn+1) for all n ∈ Z) and the pair of points
xn, yn remains δ-close for all n, then yn ∈ Fδ(xn) for every n ∈ Z.

2.1.2. Expansiveness. First we shall recall the notion of expansiveness in the
discrete time setting. Given a homeomorphism f ∈ Homeo(M) and a compact
invariant set Λ ⊂ M , we say that f is expansive in Λ if there exists δ > 0 so that
for all x, y ∈ Λ satisfying d(fn(x), fn(y)) ≤ δ for every n ∈ Z one has x = y. In
the time-continuous setting of flows, due to the possible presence of singularities,
there are several notions of expansiveness (see e.g. [11, 30]). We recall some of these
notions, starting by the one introduced by Bowen and Walters [11].

Definition 2.1. Let (M, d) be a compact metric space, ϕ : R × M → M be a
continuous flow, and Λ ⊆ M be a compact ϕ-invariant set. We say that the flow
ϕ is C-expansive in Λ if for any ε > 0 there exists δ > 0 so that if x, y ∈ Λ
and d(ϕt(x), ϕh(t)(y)) < δ for all t ∈ R for some continuous function h : R → R
satisfying h(0) = 0, then y = ϕt0(x) for some |t0| < ε.

The later means that, for expansive flows, orbits of two points x, y by the
flow that always remain close to each other (up to reparametrization) do coincide.
Singularities of a C-expansive flow are necessarily isolated points [11, Lemma 1].
Moreover, C-expansive flows on connected manifolds do not admit singularities. A
weaker notion, as follows, was introduced later by Keynes and Sears [19].

Definition 2.2. Let (M, d) be a compact metric space, ϕ : R × M → M be a
continuous flow, and Λ ⊆ M be a compact ϕ-invariant set. We say that the flow
ϕ is K-expansive in Λ if for any ε > 0 there exists δ > 0 so that if x, y ∈ Λ and
d(ϕt(x), ϕh(t)(y)) < δ for all t ∈ R for some increasing homeomorphism h : R→ R
with h(0) = 0 then y = ϕt0(x) for some |t0| < ε.

Although the later is more general, these two notions are indeed equivalent in
the case that M is a compact Riemannian manifold (see e.g. [2]). Motivated by
the analysis of flows with non-isolated singularities in the non-wandering set as
the classical geometric Lorenz attractors, Komuro [20] introduced a more general
notion of expansiveness that we now describe.

Definition 2.3. Let (M, d) be a compact metric space, ϕ : R × M → M be a
continuous flow, and Λ ⊆M be a compact ϕ-invariant set. We say that the flow ϕ
is Komuro-expansive in Λ if for any ε > 0 there exists δ > 0 so that if x, y ∈ Λ and
d(ϕt(x), ϕh(t)(y)) < δ for every t ∈ R and for some increasing homeomorphism
h : R → R then there is t0 ∈ R such that ϕh(t0)(y) ∈ ϕ[t0−ε, t0+ε](x). Here, as
usual, ϕ[t0−ε, t0+ε](x) := {ϕt(x) : t ∈ [t0 − ε, t0 + ε]}.
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Sometimes Komuro-expansive flows are simply called expansive in literature, and
we keep this nomenclature. It follows from the previous definitions that

C-expansiveness⇒ K-expansiveness⇒ expansiveness. (2.1)

On the converse direction, these three notions of expansiveness are equivalent for
flows without singularities (cf. [30, Theorem A]) but may differ for flows with
singularities. If not explicited otherwise we assume Λ = M , meaning expansiveness
in the whole manifold. It is well known that uniformly hyperbolic flows are C-
expansive and, for that reason, expansive diffeomorphisms and flows contain as
special classes of examples the case Anosov diffeomorphisms and Anosov flows,
respectively.

In the case of Rd-actions, each orbit of a point x in the manifoldM is an immersed
submanifold of dimension at most d. In the case that the foliation formed by the
orbits of points consist of submanifolds with different dimensions, this encloses the
same kind of topological difficulties (in a wider range of possibilities) caused by the
presence of singularities for flows.

Definition 2.4. Let M be a compact metric space and Φ : Rd ×M → M be a
continuous action. We say that Φ is expansive if for any ε > 0, there exists δ > 0
so that if x, y ∈ M satisfy d(Φv(x), Φh(v)(y)) < δ for every v ∈ Rd with respect to

a continuous function h : Rd → Rd so that h(0) = 0, then y = Φv0(x) for some
‖v0‖ < ε. In particular, y belongs to the orbit of x by Φ.

The study of the geometry and topology of the foliation by orbits of Rd-actions
is a hard problem and encloses much more difficulties than the case of flows. For
instance, in opposition to the case of vector fields, we do not expect all expansive
Rd-actions on compact connected Riemannian manifolds to be homogeneous.

2.1.3. Centralizers. Given r ≥ 0 and a diffeomorphism f ∈ Diff r(M) the centralizer
of f is the set

Zr(f) = {g ∈ Diff r(M) : f ◦ g = g ◦ f}
where, by some abuse of notation, we let Diff 0(M) denote the space of
homeomorphisms. The definition for time-continuous dynamical systems is
analogous. Given r ≥ 0, let Fr(M) denote the space of Cr-flows on M . Given
a flow ϕ = (ϕt)t∈R ∈ Fr(M), the centralizer of Φ is defined as

Zr(ϕ) = {ψ = (ψt)t∈R ∈ Fr(M) : ψs ◦ ϕt = ϕt ◦ ψs,∀ s, t ∈ R}.

It is clear from the previous definition that flows obtained as reparametrizations of a
flow ϕ belong to Zr(ϕ). For that reason, the centralizer of a flow is never a discrete
subgroup. In the case of smooth flows, the previous characterization of centralizer
has a dual formulation in terms of vector fields. Given r ≥ 1 and X ∈ Xr(M), one
can define the centralizer of the vector field X by

Zr(X) = {Y ∈ Xr(M) : [X,Y ] = LYX = 0},

where LYX denotes the Lie derivative of the vector field X along Y .

Definition 2.5. Given r ≥ 0, we say a flow ϕ = (ϕt)t ∈ Fr(M) has quasi-trivial
centralizer if for any ψ ∈ Zr(ϕ) there exists a Cr-function A : M → R so that

(i) (orbit invariance) A(x) = A(ϕt(x)) for every (t, x) ∈ R×M , and
(ii) ψt(x) = ϕA(x)t (x) for every (t, x) ∈ R×M .
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In the case that the reparametrizations A are necessarily constant then we say the
centralizer is trivial. Dually, we say that X ∈ Xr(M) has quasi-trivial centralizer
if for any Y ∈ Zr(X) there exists A ∈ Cr(M, R) so that Y = A ·X and X(A) = 0.
If A is constant then we say that the centralizer is trivial.

Observe that the previous notions for vector fields and flows are dual. On the
one hand, if X(h) = 0 for some h : M → R then h is constant along the orbits of the
flow. On the other hand, if Y = h ·X and h is constant along the orbits of the flow
(Xt)t generated by X then the flow (Yt)t generated by Y satisfies Yt(x) = Xh(x)t(x)

for every t ∈ R and x ∈M . The centralizer of a Rd-action is defined similarly.

Definition 2.6. Given a Cr-action Φ : Rd ×M →M , we define its centralizer as
the set Zr(Φ) = {Ψ : Rd×M →M : Φv ◦Ψu = Ψu ◦Φv for all v, u ∈ Rd}. We say
that Φ has a quasi-trivial centralizer if for any Ψ ∈ Z1(Φ) there exists a Cr-map
A : M →Md×d(R) satisfying A(x) = A(Φv(x)) for every v ∈ Rd and x ∈ M and
so that Ψv(x) = Φ(A(x)v, x) for every (v, x) ∈ Rd ×M .

2.2. Statement of the main results. This subsection is devoted to the statement
of the main results.

2.2.1. Centralizers of Komuro-expansive flows. It is known that C-expansive flows
on compact and connected metric spaces have quasi-trivial centralizer [29] (the
author used the nomenclature of “unstable centralizer”). Our first result is an
extension of the aforementioned results for the broader class of expansive flows.

Theorem A. Let ϕ be a C∞ flow on a compact, connected Riemannian manifold M
and let Λ ⊂M be a compact ϕ-invariant set such that ϕ is transitive and Komuro-
expansive in Λ. If all the singularities of ϕ|Λ are hyperbolic and non-ressonant then
the centralizer Z∞(ϕ|Λ) is quasi-trivial. Thus, for any ψ ∈ Z∞(ϕ|Λ) there exists a
C∞-map A : Λ → R, constant along the orbits of ϕ|Λ (meaning A(x) = A(ϕt(x))
for every x ∈ Λ and t ∈ R) so that ψt(x) = ϕA(x)t(x) for every (t, x) ∈ R× Λ.

Some comments are in order. Firstly, the C∞ regularity assumption in the
previous theorem is not used in full strength. Indeed, the argument in the proof
of the theorem can be divided two main steps: (i) the orbit of a regular point
by an element in the centralizer is a reparametrization of the original trajectory,
and (ii) the reparametrization obtained at regular orbits extend continuously to
singularities. Our strategy combines the linearization at hyperbolic singularities
(which requires sufficiently regularity of the vector field given in terms of conditions
on the eigenvalues of the singularities as in Sternberg’s linearization results)
together with the characterization due to Kopell [21] that the Cr-centralizer of
their linear part is formed only by linear transformations provided that r is large
enough (we refer the reader to Subsection 3.5 for the details). The C∞ assumption
allows to simplify the statement. Moreover, the centralizer can be proved trivial
in the case that stable/unstable manifolds of singularities are dense in the phase
space. Secondly, we observe that a version of Theorem A for volume preserving
flows also holds. This follows straightforwardly from the arguments used in the
proof of Theorem A using linearization results for volume preserving vector fields
(see e.g. [5] and references therein). Thirdly, Komuro-expansive flows do not form a
C1-open set of flows. Nevertheless, the C1−interior of the set of Komuro-expansive
flows is not empty and contains the important classes of Anosov and singular-
hyperbolic flows. Since our results apply to proper invariant sets, in particular we
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deduce there exists an open and dense subset of C∞- geometric Lorenz attractors
with trivial centralizer (cf. Example 6.2). Finally, recalling the duality between
commuting flows and vector fields, Theorem A admits the following reformulation:
if X ∈ X∞(M) generates a Komuro-expansive flow on a compact and connected
Riemannian manifold M so that all the singularities for X are hyperbolic and non-
ressonant, then for any Y ∈ Z∞(X) there exists h ∈ C0(M,R) so that Y = h ·X
and X(h) = 0.

Our strategy implies on the quasi-triviality of the centralizer on the topological
basin of attraction of attractors. Using spectral decomposition in finitely many
basic pieces, Sad [37, Theorem B] proved that there is an open and dense subset

A
′

τ of the C∞-Axiom A vector fields with the strong transversality condition so that

Z∞(X) = {cX : c ∈ R} for every X ∈ A′τ . The following can be understood as
an extension of [37], where expansiveness and the (open and dense) non-ressonance
condition replaces the uniformly hyperbolic assumption of [37].

Corollary A. Let ϕ be an expansive C∞-flow on a compact and connected
Riemannian manifold M . Assume that all the singularities Sing(ϕ) are hyperbolic
and non-ressonant. If

Λ =
⋃

σ∈Sing(ϕ)

W s(σ)
(

or Λ =
⋃

σ∈Sing(ϕ)

Wu(σ)
)

then Z∞(ϕ |Λ) is trivial. In other words, if ψ ∈ Z∞(ϕ |Λ) then there exists c ∈ R
so that ψt(x) = ϕct(x) for every t ∈ R and x ∈ Λ.

2.2.2. Centralizers of Rd-actions. Our previous results have implications for the
study of the centralizer of smooth Rd-actions that admit expansive elements. For
example, the following is a consequence of Theorem A.

Corollary B. Take d ≥ 1 and let Φ : Rd ×M → M be a continuous Rd-action
on a compact Riemannian manifold M . If there exists v ∈ Rd so that (Φtv)t∈R is
an expansive flow then the orbits of Φ are one-dimensional and coincide with the
orbits of a flow.

By the previous corollary, if an Rd-action has some orbit of dimension larger
than one then there exists no v ∈ Rd so that (Φtv)t∈R is an expansive flow. In what
follows we shall introduce the notion of homogeneous Rd-actions.

Definition 2.7. Let M be a compact Riemannian manifold. We say that the Rd-
action Φ : Rd ×M →M is homogeneous if all orbits by Ψ are submanifolds on M
with dimension equal to d.

We observe that a flow is homogeneous if and only it has no singularities. In
particular, not every manifold admits homogeneous Rd-actions (e.g. every C1-flow
on S2 admits singularities, by Poincaré-Bendixson theorem). On the other hand,
manifolds that support homogeneous Rd-actions include the torus Tn (n ≥ d) (using
suspension actions defined in Section 4), and the space of homogeneous Rd-actions
forms a open subset of all Rd-actions. Indeed, if (e1, . . . , ed) denotes a basis of Rd,
Φ : Rd×M →M is a smooth Rd-action, and ϕei := (Φtei)t∈R denotes the canonical
flow generated by the direction ei

ϕei : R×M → M
(t, x) 7→ Φ(tei, x)
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then it is not hard to check that Φ is homogeneous if and only if the vector fields
Xei(x) = d

dtϕei(t, x) |t=0 are linearly independent at all points of M , which is clearly
an open condition. In what follows we describe the centralizer of expansive and
homogeneous Rd-actions.

Theorem B. Let M be a compact Riemannian manifold and Φ : Rd×M →M be a
continuous action. If Φ is expansive and homogeneous then Z1(Φ) is quasi-trivial,
i.e., there exists a C1-map A : M → Md×d(R) satisfying A(x) = A(Φv(x)) for
every v ∈ Rd and so that Ψv(x) = Φ(A(x)v, x) for every (v, x) ∈ Rd ×M .

The previous result is the counterpart of [29] for Rd-actions. We also obtain
a geometrical interpretation for the reparametrization A(·) obtained above (see
Proposition 5.1) and prove that Anosov actions also have quasi-trivial centralizer
(see Example 6.6). The description of the centralizer of non-homogeneous,
expansive Rd-actions encodes difficulties similar to the ones for flows where singular
and non-singular orbits coexist. The strategy used in the case of flows with
singularities can probably be applied similarly in the case that the set of singular
orbits (ie. of dimension smaller than d) has empty interior in M . More generally, it
is not hard to see that elements in the centralizer of any Rd-action preserve orbits of
the same dimension but it is unclear if these are reparametrizations of the original
action. We also establish a characterization of expansive Rd-actions obtained as
suspensions of Zd-actions (Theorem C). Since the precise statement of this result
requires many extra definitions we will state and prove it in Section 4).

3. Centralizer of expansive flows

This section is devoted to the proof of Theorem A. We subdivide the proof in
subsections for making the exposition clearer. Let ϕ be a C∞ flow defined in a
compact manifold M and Λ ⊂ M be a compact ϕ-invariant subset on which the
flow is expansive and all singularities are hyperbolic and non-ressonant. First we
prove that all periodic orbits on Λ, if they exist, have their periods larger than some
uniform lower bound (Lemma 3.2). This is enough to obtain tubular flowboxes of
uniform size µ, at each regular point, and to use expansiveness to guarantee that
every flow ψ ∈ Z∞(ϕ|Λ) is locally a reparametrization of the flow ϕ on Λ\Sing(ϕ|Λ)
and that such local reparametrization is unique and defined for all time in [−µ, µ]
(cf. Lemma 3.3). Then we borrow the strategy of [29] to prove that although
Λ \ Sing(ϕ|Λ) may be non-compact the local reparametrizations of the orbits can
be uniquely extended to the real line R on all regular points x ∈ Λ \ Sing(ϕ|Λ)
(cf. Proposition 3.1). Finally, we show that the reparametrizations are linear
and constant along orbits of regular points of ϕ|Λ. Using the linearization of
the singularities together with a version of Kopell’s description of the centralizer
of linear flows (Lemma 3.5) we conclude that the reparametrizations can be
continuously extended to the singularities (hence, are globally defined in Λ) and
that these are smooth. Throughout this section, and for notational simplicity, we
use the notation ϕt instead of (ϕ |Λ)t.

3.1. Bound on length of periodic orbits. In next lemma we prove the existence
of positive infimum for the period of periodic orbits of regular points of ϕ|Λ, in case
they exist. We will need the tubular neighborhood theorem for vector fields.

Lemma 3.1. Let M be a compact Riemannian manifold of dimension n. Given
X ∈ X1(M) and a regular point x ∈ M there exists δ = δx > 0, an open
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neighborhood U δx of x (called tubular neighborhood), and a C1-diffeomorphism
Ψx : Uδx → (−δ, δ) × B(x, δ) ⊂ R × Rd−1 such that the vector field X on Uδx
is the pull-back of the vector field Y := (1, 0, . . . , 0) on (−δ, δ) × B(x, δ), that is,
Y = (Ψx)∗X := D(Ψx)Ψ−1

x
X(Ψ−1

x ). In particular Yt(·) = Ψx(Xt(Ψ
−1
x (·))) for every

|t| < δ.

Lemma 3.2. Let ϕ be a C1 flow defined in a compact manifold M and Λ ⊂M be
a compact ϕ-invariant subset such that all singularities of ϕ in Λ are hyperbolic.
Then, either ϕ |Λ has no regular periodic orbits or

ε0(ϕ|Λ) := inf{T > 0 : T is period of a regular periodic orbit of ϕ |Λ} > 0.

Proof. Assume that ϕ |Λ has regular periodic orbits. Since all singularities are
hyperbolic and Λ is compact then these must be in finite number σ1, · · · , σn. For
all 1 ≤ i ≤ n let Vi be a small neighborhood of σi given by Hartman-Grobman’s
Theorem (see [31], p. 68). Every small Vi which is neighborhood of a sink or source
contains no regular periodic orbits. On other hand, if a periodic orbit intersects
a neighborhood Vi associated with a hyperbolic singularity of saddle type then its
period is bounded below by a uniform constant (which is inversely proportional to
the largest eigenvalue of the unstable bundle among the hyperbolic saddles). It
remains to prove that all periodic orbits in S = Λ ∩ (M \

⋃n
i=0 Vi) have a period

bounded away from zero. By construction S is a compact set without singularities.
For every x ∈ S let δx > 0 and Bx = U δxx be a tubular neighborhood associated to x.
By compactness of S the open covering (Bx)x∈S admits a finite cover (Bxj )

κ
j=1. It

is now clear that any periodic orbit in S has period larger or equal to min1≤j≤κ δxj .
Thus ε0(ϕ|Λ) > 0, which finishes the proof of the lemma. �

3.2. Expansiveness and local triviality at regular points. In the next lemma,
we prove the existence, uniqueness and continuity of a local reparametrization for
an element in the centralizer of an expansive flow
varphi. In the case that ϕ has no regular period orbits on Λ set for simplicity
ε0(ϕ |Λ) = +∞.

Lemma 3.3. Let ϕ a C1 flow on a compact manifold M and Λ ⊂M be a compact
ϕ-invariant subset such that the restriction ϕ|Λ is expansive and all the singularities

of ϕ in Λ are hyperbolic. If ψ = (ψs)s∈R belongs to Z1(ϕ|Λ) then for any 0 < ε <

ε0(ϕ|Λ)/3 there exists µ > 0 and a unique function z : [−µ, µ]×
(
Λ \ Sing(ϕ|Λ)

)
→

(−ε, ε) such that ψs(x) = ϕz(s, x)(x) for any (s, x) ∈ [−µ, µ] ×
(
Λ \ Sing(ϕ|Λ)

)
.

Moreover,

(i) z is continuous,
(ii) if t, s, t+ s ∈ [−µ, µ], z(t+ s, x) = z(t, x) + z(s, ψ(t, x)).

Proof. By Lemma 3.2 we have that ε0(ϕ|Λ) > 0. Given 0 < ε < ε0(ϕ)/3, let
δ > 0 be given by the expansiveness property (recall Definition 2.3). Since Λ is
compact and ϕ-invariant then there exists µ > 0 such that sup

|s|≤µ
{d(Id, ψs)} < δ

and, consequently,

d(ϕt(x), ϕt(ψs(x))) = d(ϕt(ψ0(x)), ϕt(ψs(x))) = d(ψ0(ϕt(x)), ψs(ϕt(x))) < δ

for every x ∈ Λ, |s| ≤ µ and t ∈ R. This implies (taking h(t) = t in Definition
2.3) that there exists t0 ∈ R such that ϕt0(ψs(x)) = ϕt0+η(x) for some η ∈ (−ε, ε).
Consequently ψs(x) = ϕη(x) belongs to the orbit of x relative to the flow (ϕt)t.

9



Figure 1. Commuting flows

This defines uniquely a map z : [−µ, µ] × R × (Λ \ Sing(ϕ |Λ)) → (−ε, ε) such
that ψs(x) = ϕz(s, x)(x) for any (s, x) ∈ [−µ, µ] × R × (Λ \ Sing(ϕ |Λ)). In fact,
if z1, z2 : [−µ, µ] × R × (Λ \ Sing(ϕ |Λ)) → (−ε, ε) are such that ϕz1(s, x)(x) =
ψs(x) = ϕz2(s, x)(x) then ϕz1(s, x)−z2(s, x)(x) = x with |z1(s, x) − z2(s, x)| ≤
|z1(s, x)| + |z2(s, x)| < 2/3 ε0(ϕ). So, by definition of ε0(ϕ) we conclude that
z1(s, x) = z2(s, x).

To prove (i) assume by contradiction that z is not continuous. Then there are
δ0 > 0, (s, x) ∈ [−µ, µ]× (Λ \ Sing(ϕ |Λ)) and a sequence (sn, xn)n∈N in [−µ, µ]×
(Λ \ Sing(ϕ |Λ)) that converges to (s, x) and such that |z(sn, xn)−z(s, x)| ≥ δ0 for
all n ∈ N. This implies there exists δ1 > 0 such that d(ϕz(sn, xn)(x), ϕz(s, x)(x)) ≥
δ1 for all n ∈ N. On the other hand

δ1 ≤ d(ϕz(sn, xn)(x), ϕz(s, x)(x))

≤ d(ϕz(sn, xn)(x), ϕz(sn, xn)(xn)) + d(ϕz(sn, xn)(xn), ϕz(s, x)(x))

= d(ϕz(sn, xn)(x), ϕz(sn, xn)(xn)) + d(ψsn(xn), ψs(x)).

Using further that (z(sn, xn))k∈N is bounded then, up to consider a subsequence,
we may assume without less of generality that z(sn, xn) → t0 as n → ∞. In
consequence, the right hand side above tends to zero by continuity of the flow ϕ
and of the time t0-map ϕt0 , contradicting the existence of δ1 > 0. This proves the
continuity claimed in (i). To prove the property (ii), by the equality

ϕz(t+s, x)(x) = ψt+s(x) = ψt(ψs(x))

= ϕz(t, ψs(x))(ψs(x))

= ϕz(t, ψs(x))(ϕz(s, x)(x))

= ϕ(z(t, ψs(x)) + z(s, x), x)

and uniqueness of local reparametrization z, for 0 < ε < ε0(ϕ)/3 we conclude that
z(t + s, x) = z(t, ψ(s, x)) + z(s, x) for any t, s, t + s ∈ [−µ, µ] and every regular
point x ∈ Λ. �

3.3. Unique continuous extension for the local reparametrization. In what
follows we construct an extension of the continuous reparametrization described in
Lemma 3.3 to R× (Λ \ Sing(ϕ |Λ)) . More precisely:
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Proposition 3.1. Let ϕ be a continuous flow in M and ψ be a continuous flow
such that there exists µ > 0 and z : [−µ, µ] × (Λ \ Sing(ϕ |Λ)) → (−ε, ε)
such that ψ(s, x) = ϕ(z(s, x), x) for any (s, x) ∈ [−µ, µ] × (Λ \ Sing(ϕ |Λ)),
where 0 < ε < ε0(ϕ)/3. There exists a unique continuous function p : R ×
(Λ \ Sing(ϕ |Λ)) → R which extends z and satisfies ψ(s, x) = ϕ(p(s, x), x) for
any (s, x) ∈ R× (Λ \ Sing(ϕ |Λ)).

Proof. We first prove the existence of the reparametrization. Take N ≥ 1 so that
2−N < µ. Now, let z1 : [1/2N , 2/2N ] × (Λ \ Sing(ϕ |Λ)) → R be the continuous
function given by

z1(t, x) = z
(
t− 1

2N
, x
)

+ z
( 1

2N
, ψ
(
t− 1

2N
, x
))
.

A simple computation shows that z1( 1
2N
, x) = z( 1

2N
, x) for any point x ∈ Λ \

Sing(ϕ |Λ). This means that the functions coincide in the extreme point of the
interval [0, 1/2N ]. Now we claim that ψ(t, x) = ϕ(z1(t, x), x) for every (t, x) ∈
[1/2N , 2/2N ]× (Λ \ Sing(ϕ |Λ)). Fix (t, x) ∈ [1/2N , 2/2N ]× (Λ \ Sing(ϕ |Λ)). On
the one hand, by Lemma 3.3,

0 = z
( 1

2N
− 1

2N
, ψ(t, x)

)
= z
( 1

2N
, ψ
(
t− 1

2N
, x
))

+ z
(
− 1

2N
, ψ(t, x)

)
and consequently, z(−1/2N , ψ(t, x)) = −z(1/2N , ψ(t− 1/2N , x)) for every (t, x) ∈
[1/2N , 2/2N ]× (Λ \ Sing(ϕ |Λ)). On the other hand, since |z(·)| is bounded above
by ε0(ϕ |Λ)/3,

ϕ
(
− z
( 1

2N
, ψ
(
t− 1

2N
, x
))
, ϕ(z1(x, t), x)

)
= ϕ

(
− z
( 1

2N
, ψ
(
t− 1

2N
, x
))

+ z1(x, t), x
)

= ϕ
(
z
(
t− 1

2N
, x
)
, x
)

= ψ
(
t− 1

2N
, x
)

= ψ
(
− 1

2N
, ψ(t, x)

)
= ϕ

(
z
(
− 1

2N
, ψ(t, x)

)
, ψ(t, x)

)
= ϕ

(
− z
( 1

2N
, ψ
(
t− 1

2N
, x
))
, ψ(t, x)

)
from which the claim follows. This proves our claim and so ψ is a local
reparameterization of the flow ϕ on the interval [1/2N , 2/2N ]. Inductively, for

each integer k ≥ 1 let zk :
[ k

2N
,
k + 1

2N

]
× (Λ \ Sing(ϕ |Λ))→ R be the continuous

function given by

zk(t, x) = z
(
t− k

2N
, x
)

+

k∑
i=1

z
( 1

2N
, ψ
(
t− i

2N
, x
))
.

11



For any x ∈ Λ \ Sing(ϕ) we observe that zk

(
k+1
2N

, x
)

= zk+1

(
k+1
2N

, x
)

because

zk

(k + 1

2N
, x
)

= z
( 1

2N
, x
)

+

k∑
i=1

z
( 1

2N
, ψ
(k + 1− i

2N
, x
))

= z
( 1

2N
, x
)

+

k∑
j=1

z
( 1

2N
, ψ
( j

2N
, x
))

=

k∑
j=0

z
( 1

2N
, ψ
( j

2N
, x
))

= zk+1

(k + 1

2N
, x
)
.

In addition, zk satisfies the recursive expression

zk(t, x) = zk−1(t− 1/2N , x) + z(1/2N , ψ(t− 1/2N , x)). (3.1)

Indeed, simple computations yield

zk(t, x) = z
(
t− k

2N
, x
)

+

k∑
i=1

z
( 1

2N
, ψ
(
t− i

2N
, x
))

= z
(

(t− 1

2N
)− k − 1

2N
, x
)

+

k∑
i=1

z
( 1

2N
, ψ
(

(t− 1

2N
)− i+ 1

2N
, x
))

= z
(

(t− 1

2N
)− k − 1

2N
, x
)

+

k−1∑
i=1

z
( 1

2N
, ψ
(

(t− 1

2N
)− i

2N
, x
))

+ z
( 1

2N
, ψ
(
t− 1

2N
, x
))

and proves the equality in (3.1). We need the following:

Claim: For every x ∈ Λ\Sing(ϕ |Λ) and t ∈
[ k

2N
,
k + 1

2N

]
the function zk satisfies

ψ(t, x) = ϕ(zk(t, x), x).

Proof of the claim. The claim for k = 1 is trivial. By induction, assume that the
affirmation is true for k − 1. Then, using (3.1), we obtain that

ϕ
(
− z
( 1

2N
, ψ
(
t− 1

2N
, x
))
, ϕ(zk(t, x), x)

)
= ϕ(−z( 1

2N
, ψ(t− 1

2N
, x)) + zk(t, x), x)

= ϕ
(
zk−1

(
t− 1

2N
, x
)
, x
)

= ψ
(
t− 1

2N
, x
)

= ψ
(
− 1

2N
, ψ(t, x)

)
= ϕ

(
z
(
− 1

2N
, ψ(t, x)

)
, ψ(t, x)

)
= ϕ

(
− z
( 1

2N
, ψ
(
t− 1

2N
, x
))
, ψ(t, x)

)
.

Since the time-s map ϕs is a diffeomorphism for all s ∈ R, we conclude that

ϕ(t, x) = ϕ(zk(t, x), x) for every x ∈ Λ \ Sing(ϕ |Λ) and t ∈
[ k

2N
,
k + 1

2N

]
, which

proves the claim. �
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Clearly, a completely similar argument as above is enough to extend z(t, x)
for all negative t. Just consider the continuous function z1 : [−2/2N , −1/2N ] ×
(Λ \ Sing(ϕ |Λ))→ R given by

z1(t, x) = z
(
t+

1

2N
, x
)

+ z
(
− 1

2N
, ϕ
(
t+

1

2N
, x
))
.

Computations similar to the ones above yield that for any x ∈ Λ \ Sing(ϕ |Λ
), the function z1(·, x) satisfies z1(−1/2N , x) = z(−1/2N , x) and ϕ(t, x) =
ϕ(z1(t, x), x). Then, for each positive integer k, take zk :

[
−(k + 1)/2N , −k/2N

]
×

(Λ \ Sing(ϕ |Λ))→ R given by

zk(t, x) = z
(
t+

k

2N
, x
)

+

k∑
i=1

z
(
− 1

2N
, ϕ
(
t+

i

2N
, x
))
,

which satisfies ϕ(t, x) = ϕ(zk(t, x), x) for every t ∈
[
−(k + 1)/2N , −k/2N

]
and

x ∈ R × (Λ \ Sing(ϕ |Λ)). Altogether we get a well-defined continuous function
p : R× (Λ \ Sing(ϕ |Λ))→ R given by

p(t, x) =


z(t, x), if t ∈ [−1/2N , 1/2N ]
zk(t, x), if t ∈

[
k/2N , (k + 1)/2N

]
zk(t, x), if t ∈

[
−(k + 1)/2N , −k/2N

] , k ∈ N.

By construction, for every ψ ∈ Z∞(ϕ) there exists p is continuous and such that
ψ(t, x) = ϕ(p(t, x), x) for every (t, x) ∈ R× (Λ \ Sing(ϕ |Λ)). This concludes the
proof of the existence of the reparametrization.

In the remaining of the proof of the proposition we are left to prove the
uniqueness of the reparametrization among non-singular points. For this, suppose
there are p1, p2 : R × (Λ \ Sing(ϕ |Λ)) → R, continuous extensions of z such that
ϕ(p1(t, x), x) = ψ(t, x) = ϕ(p2(t, x), x) for all (t, x) ∈ R × (Λ \ Sing(ϕ |Λ)). Fix
x ∈ Λ\Sing(ϕ |Λ) and consider the continuous function αx(t) = p1(t, x)−p2(t, x).
Observe that α−1

x (0) ⊃ [−µ, µ] (thus α−1
x (0) is non empty) and α−1

x (0) is closed by
continuity of αx.

Assume, by contradiction, that α−1
x (0) 6= R, Then, as αx is continuous, there

exists t0 = max{t > 0 : [0, t] ⊂ α−1
x (0)} ≥ µ or min{t < 0 : [t, 0] ⊂ α−1

x (0)} ≤ −µ.
We assume the first case holds (the second is completely analogous). By continuity
of the reparametrizations p1(t0, x) = p2(t0, x). Moreover, if t ∈ [−µ, µ], then
ϕ(pi(t+ t0, x), x) = ψ(t+ t0, x) = ψ(t, ψ(t0, x)) for i ∈ {1, 2}. By Lemma 3.3 we
know the existence of a unique function z : [−µ, µ]×R×(Λ \ Sing(ϕ |Λ))→ (−ε, ε)
such that ψ(s, x) = ϕ(z(s, x), x) for any (s, x) ∈ [−µ, µ] × R × (Λ \ Sing(ϕ |Λ)).
In particular,

ψ(t, ϕ(t0, x)) = ϕ(z(t, ϕ(t0, x)), ϕ(t0, x))

= ϕ(z(t, ϕ(t0, x)), ϕ(p(t0, x), x))

= ϕ(z(t, ϕ(t0, x)) + p(t0, x), x),

which contradicts the maximality of t0. Consequently, we conclude that α−1
x (0) = R

and that the reparametrizations p1 and p2 do coincide. This completes the proof
of Proposition 3.1. �
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3.4. Invariance of reparametrizations along regular orbits. In what follows
we prove that the unique reparameterization obtained in Proposition 3.1 is invariant
along orbits of regular points.

Lemma 3.4. If p is the reparametrization given in Proposition 3.1 then p(t, x) =
p(t, ϕ(s, x)) for every t ∈ R and any x ∈ Λ \ Sing(ϕ |Λ). Moreover, there exists
a unique continuous function A : Λ \ Sing(ϕ |Λ) → R so that p(t, x) = A(x)t for
every t ∈ R and x ∈ Λ \ Sing(ϕ |Λ).

Proof. Initially we observe that, since ψ commutes with ϕ,

ϕ(s+ p(t, x), x) = ϕ(s, ϕ(p(t, x), x)) = ϕ(s, ψ(t, x))

= ψ(t, ϕ(s, x)) = ϕ(p(t, ϕ(s, x)), ϕ(s, x))

= ϕ(p(t, ϕ(s, x)) + s, x).

Therefore, for µ sufficiently small and t ∈ [−µ, µ] this equality implies that p(t, x) =
p(t, ϕ(s, x)) for every s ∈ R. From the construction and uniqueness of function p
together with the recursive expression (3.1) it follows that p(t, x) = p(t, ϕ(s, x))
for all t, s ∈ R. Using that p(t, x) = p(t, ϕ(s, x)) for every s ∈ R together with
Proposition 3.1,

ϕ(p(t+ s, x), x) = ψ(t+ s, x) = ψ(t, ψ(s, x))

= ϕ(p(t, ψ(s, x)), ψ(s, x))

= ϕ(p(t, ϕ(p(s, x), x)), ϕ(p(s, x), x))

= ϕ(p(t, ϕ(p(s, x), x)) + p(s, x), x)

= ϕ(p(t, x) + p(s, x), x)

for all t ∈ R. The uniqueness of p implies that p(t + s, x) = p(t, x) + p(s, x) for
all t, s. Since p(·, x) is continuous then it is linear. Hence there exists a continuous
map A : M → R so that p(t, x) = A(x)t for all x ∈ Λ \ Sing(ϕ |Λ). This finishes
the proof of the lemma. �

3.5. Extension of the reparametrization to singular points. Under our
assumptions on the singularities the reparametrization obtained Proposition 3.1 we
will proved to extend continuously to the singular points. This will complete the
proof of Theorem A. For this, initially we deduce the following version of Kopell’s
theorem ([21], Theorem 6) for linear contractions. For any complex number λ ∈ C
let Re(λ) denote its real part.

Lemma 3.5. Given B ∈ GL(n,R) let ϕ = (et·B)t∈R be such that 0 is a sink and
assume that it has non-ressonant eigenvalues. If λ1, · · · , λn are the eigenvalues of
B and m is the least positive integer such that

m ·
(

max
1≤i≤n

Re(λi)
)
< min

1≤i≤n
Re(λi) (3.2)

then Zm(ϕ) is the set of linear flows (es·C)s∈R where C ∈ GL(n,R) is such that
B · C = C ·B.

Proof. As 0 is a sink for B then eB is a linear contraction and, the fact that the
eigenvalues of B satisfy condition (3.2) on the eigenvalues of B implies that the
non-ressonance conditions in [21, Theorem 6]. Since 0 is a sink then all eigenvalues
λ1, · · · , λn of B have real negative part and |eλi | < 1 for all 1 ≤ i ≤ n. Thus, if
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m is given by (3.2) above, the result of Kopell implies that the Cm-centralizer of
the linear automorphism eB acting on Rn is constituted exclusively by linear maps.
So, any element of Zm(ϕ) is a flow ψ = (ψs)s∈R such that ψs is a linear map for
all s ∈ R (since all of these should commute with the time-1 map eB).

In what follows we show that any flow of linear maps ψ ∈ Zm(ϕ) is of exponential
type. We claim that ψs = esC for every s ∈ R, where

C(x) := lim
s→0

ψs(x)− x
s

=
∂ψs
∂s
|s=0 (x)

for x ∈ Rn. Let T > 0 be fixed. Since the maps t → ‖etC‖ and s → ‖ψs‖ are
continuous there exists a constant K > 0 (depending on T ) such that ‖ψs‖·‖etC‖ ≤
K for all 0 ≤ t, s ≤ T . Given ε > 0, as C = lim

s→0

esC−Id
s , one can choose 0 < δ ≤ T

such that

‖ψh − e
hC

h
‖ < ε

KT
for all 0 ≤ h ≤ δ.

Now pick n ∈ N such that T
n < δ. Then, using the triangular inequality, for any

t ∈ [0, T ]

‖ψt − etC‖ = ‖ψn· tn − e
n tnC‖

≤
n−1∑
k=0

‖ψ(n−k)· tn ◦ e
k tnC − ψ(n−k−1)· tn ◦ e

(k+1) tnC‖

≤
n−1∑
k=0

‖ψ(n−k−1)· tn ‖ · ‖ψ t
n
− e tnC‖ · ‖ek tnC‖

≤ Kn · ε

KT
· t
n
< ε.

Since ε was chosen arbitrary the later proves that ψt = etC for all t ∈ [0, T ]. The
group property implies that the equality holds for all t ∈ R. Finally, such flows
commute if and only if BC = CB. This completes the proof of the lemma.

�

Next, we use Lemma 3.5 to prove that the reparametrization can be continuously
extended to the singularities σi. Indeed, we will prove that the restriction of
the local reparametrizations to the stable and unstable manifolds W s(σi) \ σi
and Wu(σi) \ σi of a non-ressonant hyperbolic singularity σi of a C∞-flow ϕ are
necessarily constant. This, together with the fact that

Z∞(ϕ) ⊂ Zm(ϕ) ⊂ Z1(ϕ)

for every m ∈ N and every C∞-flow ϕ be a key step in the proof of the theorem.

Lemma 3.6. Let ϕ : R × Λ → Λ a C∞-expansive flow defined on a compact
Riemannian manifold M . Suppose that the singularities σ1, · · · , σk of ϕ are
hyperbolic, set Bi = d

dtϕ(t, σi)|t=0 and let TσiM = Esi ⊕ Eui be the hyperbolic
splitting, 1 ≤ i ≤ k. If the eigenvalues of Bi |E∗i are distinct and non ressonant
for every 1 ≤ i ≤ k and ∗ ∈ {s, u} then the continuous function A(·) given by
Lemma 3.4 admits a continuous extension to Λ.

Proof. Since the singularities of ϕ are hyperbolic then these are isolated and,
for that reason, it is enough to extend the function A(·) to each singularity

15



recursively. We subdivide the proof in two cases, corresponding to the case where
the singularities are either sinks/sources or saddles.

Case 1 : σi is a sink or a source.

Assume without loss of generality that σi is a sink. Indeed, in the case that σi is
a source the proof is completely analogous just by considering the time reversed
flow (ϕ−t)t∈R. Since the eigenvalues of Bi = d

dtϕ(t, σi)|t=0 are non-ressonant, by
Sternberg linearization theorem (see [40]) there exists a neighborhood Wi of σi
such that the flow (ϕt)t is C∞-linearizable in Wi: there exists a C∞-chart ζi on
an open set in RdimM so that ηt := ζi ◦ ϕt ◦ ζ−1

i , t ∈ R, defines a linear flow
on Wi. This conjugation ζi induces a natural isomorphism between Z∞((ϕt)t∈R)
and Z∞((ηs)s∈R) in the sense that (ψs)s∈R ∈ Z∞((ϕt)t∈R) if and only if (h ◦ ψs ◦
h−1)s∈R ∈ Z∞((ηt)t∈R).

We use this fact to determine the centralizer of ϕ in a neighborhood of the
singularities σi. On the one hand, Lemma 3.5 implies that the centralizer
Z∞((esBi)s∈R) is formed by the linear flows (esC)s∈R where the linear map C
satisfies Bi · C = C · Bi. On the other hand, it follows from Lemmas 3.3 and 3.4
and Proposition 3.1 that any ψ ∈ Z∞(ϕ) is reparametrization of ϕ, meaning that
there exists continuous function A : Wi\{σi} → R so that ψt(x) = ϕA(x)·t(x) for all

t ∈ R. Thus we are interested in determining which linear flows (esC)s∈R preserve
the orbits of the linear flow (etBi)t∈R. We claim that all such flows are of the form
(esC)s∈R with C = cBi, for some c ∈ R. In fact, if C 6= cBi for all c ∈ R then there
would exist x ∈ Rn such that the vectors {Bi(x), C(x)} are linearly independent
and, consequently, the orbits of x by the two flows are transversal at x. This would
contradict the fact that (esCx)s∈R is a reparametrization of (etBix)t∈R and proves
the claim. Finally we conclude via the conjugation given by Sternberg linearization
theorem that, in the linearizing coordinates, the function A(x) given by Lemma 3.4
is constant in W s(σi) \ {σi}, hence it admits a continuous extension to σi.

Case 2: σi is a saddle.

Let Wi be a neighborhood of σi given by Hartman-Grobman’s theorem: the flow
ϕ is topologically conjugate to the hyperbolic linear flow (etBi)t∈R on Wi, where
Bi = d

dtϕ(t, σi)|t=0. Choose a suitable base of Rd so that Bi = diag{B1,i, B2,i} and

B1,i e B−1
2,i are contractions. Moreover, since the eigenvalues of B are non-ressonant,

we may reduce Wi if necessary to guarantee that the flow ϕ restricted to the open
neighborhood Si := Wi ∩W s(σ) of p in W s(σi) (resp. open neighborhood Ui :=
Wi ∩Wu(σ) of p in Wu(σi)) is C∞-conjugate to the linear contraction (etB1,i)t∈R
(resp. to the linear expansion (etB2,i)t∈R). Using Case 1 to deal, independently, with
both linear flows we deduce that the reparametrization A(x) given by Lemma 3.4
is constant along both invariant manifolds W s(σi) \ {σi} and Wu(σi) \ {σi}. To
conclude that A(x) extends continuously to σi it is enough to show that, in the
linearizing coordinates, there exists c ∈ R so that A(x) = c is constant for all
x ∈ [W s(σi) ∪Wu(σi)] \ {σi}. For this, consider a compact cross-section Σ that

is transversal to W s(σi), a compact section Σ
′

that it is transversal to Wu(σi), a
point x ∈ Σ∩W s(σi) and a sequence (xn) of regular points in Σ\(W s(σi)∪Wu(σi))
such that xn → x when n→∞. For all n ≥ 1 large there exists a sequence (tn) in

R such that ϕ(A(xn)tn, xn) ∈ Σ
′
. By compactness of Σ

′
there exists a convergent

subsequence (ϕ(A(xnk)tnk , xnk))k≥1. Denoting by x′ the limit of the subsequence,
the continuity of A in R× (Λ \ Sing(ϕ |Λ)) and its invariance along the orbits (cf.
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Proposition 3.1 and Lemma 3.4) implies that

A(x) = lim
k→∞

A(xnk) = lim
k→∞

A(ϕ(A(xnk)tnk , (xnk))

= A( lim
k→∞

ϕ(A(xnk)tnk , xnk)) = A(x
′
).

Thus A extends continuously and uniquely to a reparametrization on M so that
ψt(x) = ϕA(x)t(x) for all (t, x) ∈ R×M , ψ ∈ Z∞(ϕ). This completes the proof of
the lemma. �

To complete the proof of Theorem A it remains to prove that the
reparametrization A is C∞-smooth. First assume x is a regular point for (ϕt)t
and W ⊂ M be a small open neighborhood of x. Denote by X the vector field
associated to (ϕt)t. Up to consider a change of coordinates by a chart, we will
assume without loss of generality that W ⊂ Rdim(M) and that both ϕ = (ϕt)t and
ψ ∈ Z∞(ϕ) are (locally) flows in Rdim(M).

Fix t 6= 0 and consider the C∞-function F (c, x) = ϕct(z) − ψt(z) for c ∈ R
and z ∈ W . By construction, F (A(z), z) = 0 for every z ∈ W (since the later is

equivalent to ψt(z) = ϕA(x)t(z)). Since the partial derivative
∂F

∂c
|c0= X(ϕc0t(x)) 6=

0 (because x is a regular point) then it follows from the implicit function theorem
[34] that A(·) has the same regularity of F . In other words, A is a C∞-function in
W . It remains to check that A is C∞ at the singularities. If σ is a hyperbolic
singular point it can be a sink (or source) or a saddle. If σ is a sink (resp.
source), since the reparametrization is constant in W s(σ) (resp. Wu(σ)) then A is
constant in a neighborhood of x and it is trivially C∞. Finally, if σ is a saddle,
the reparametrization A is constant in W s(σ) ∪Wu(σ) and constant along orbits
of the flow. Hence, the C∞ regularity at a neighborhood of σ follows (similarly as
done in the proof of Lemma 3.6) by establishing the continuity of all its derivatives
on points forming a global cross-section to the flow on the local neighborhood of σ.
This proves that A in C∞ and completes the proof of Theorem A.

3.6. Proof of Corollary A. Let ϕ be a C∞-expansive flow on a compact and
connected Riemannian manifold M whose singularities are hyperbolic and non-
ressonant and suppose without loss of generality that Λ =

⋃
σ∈Sing(ϕ)

W s(σ) (the

other case is completely similar). If ψ ∈ Z∞(ϕ), Theorem A guarantees that there
exists A : M → R such that ψt(x) = ϕA(x)t(x). Moreover, the arguments used
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in the proof of Lemma 3.6 yield that this reparametrization A is constant in each
W s(σi). Since there are finitely many singularities the image of A is constituted
only by a finite number of elements. Now, using that M is connected and that A
is continuous we conclude that A is constant. Consequently, there exist c ∈ R so
that ψt(x) = ϕct(x), for every t ∈ R and x ∈M . This proves the corollary. �

4. Expansive Rd-actions and suspensions

In what follows we provide a characterization of expansive Rd-actions obtained
as suspensions of Zd-actions. Expansive subdynamics of Zd-actions on compact
metric spaces have been considered e.g. in [10, 13]. Here we deal with expansive
Rd-actions and this first result is an extension of [11, Theorem 6], where Bowen and
Walters proved that a continuous Z-action is expansive if and only if its suspension
flow is C-expansive. We first recall the notion of suspension action.

4.1. Suspension of Zd-actions. We first recall the notion of an Rd-action that
is obtained as suspension of a Zd-action. Let (ei)

d
i=1 be the canonical base on

Rd. Given a Zd-action, ϕ : Zd ×M → M (d ≥ 2) we construct Rd-actions that
are suspensions of ϕ. Given a continuous roof function R : M → (0, ∞)d with
R = (R1, . . . , Rd) consider the setMR = (M×Rd+)/ ∼R where∼R is the equivalence
relation

(x, a1, · · · , ai−1, Ri(x), ai+1, · · · , ad) ∼F (fi(x), a1, · · · , ai−1, 0, ai+1, · · · , ad)
for every x ∈ M , 0 ≤ aj ≤ Rj(x), where fi(x) = ϕ(ei, x). Observe that
ϕ((n1, · · · , nd), x) = fn1

1 ◦ · · · ◦ fndd (x) for every integers ni and x ∈ M . The

suspension Rd-action of ϕ : Zd ×M → M with the roof function R is the action
Φ : Rd ×MR →MR is defined by

Φ((t1, · · · , td), (x, a1, · · · , ad)) = Φ(t1e1 + · · ·+ tded, (x, a1, · · · , ad))
= Φ(t1e1, Φ(t2e2, · · ·Φ(tded, (x, a1, · · · , ad))))

where

Φ(tei, (x, a1, · · · , ad)) = (fni (x), a1, · · · , ai−1, ai + t−
n−1∑
j=0

Ri(f
j
i (x)), ai+1 ad)

and n ∈ Z is uniquely determined by
∑n−1
j=0 Ri(f

j
i (x)) ≤ ai + t <

∑n
j=0Ri(f

j
i (x)),

for every x ∈ M , 1 ≤ i ≤ d and 0 ≤ ai ≤ Ri(x). In this way, any Zd-action
on a compact n-dimensional manifold M determines a Rd-action Φ on a n + d-
dimensional compact manifold MR.

The space MR is metrizable and we exhibit a metric d that is compatible with
the natural topology on MR and is the analogous of the Bowen-Walters metric for
flows. For the purposes of Theorem C it is enough to consider the roof function
R constant to one and the corresponding space M1. Let ρ denote the metric on
M . Given M × {(t1, · · · , td)} ⊂ M1 and σ = (σ1, · · · , σd) ∈ {0, 1}d, consider the
‘horizontal’ distance ρh on M × {(t1, · · · , td)} defined by

ρh((x, t1, · · · , td), (y, t1, · · · , td))

=
∑

σ∈{0, 1}d

{
d∏
i=1

[
σi · ti + (1− σi) · (1− ti)

]}
ρ(fσ1

1 ◦ · · · ◦ f
σd
d (x), fσ1

1 ◦ · · · ◦ f
σd
d (y)).
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Figure 2. The four generating vectors in Z2 (on the left) and
distances involved in the convex combination (on the right).

It is not hard to show that∑
σ∈{0, 1}d

{
d∏
i=1

[
σi · ti + (1− σi) · (1− ti)

]}
= 1

and, consequently, defined in this way, ρh((x1, t1, · · · , td), (x2, t1, · · · , td))
consists of the convex combination of the distances between the images of the
points x, y and their iterates by maps of the form fσ1

1 ◦ · · · ◦ fσdd . Second, in
the particular case that d = 1, ρh((x, t), (y, t)) = (1 − t)ρ(x, y) + tρ(f(x), f(y))
coincides with the metric introduced in [11] for suspension flows. Given any two
points (x, t1, · · · , td), (y, s1, · · · , sd) ∈ M1 consider the space of all the finite
(admissible) sequences ω1 = (x1, t1, · · · , td), · · · , ωn = (xn, s1, · · · , sd) such that
x1 = x, xn = y and, for each 1 ≤ i ≤ n− 1, either

(1) ωi, ωi+1 ∈M×{(t1, · · · , td)} for some (t1, · · · , td) ∈ [0, 1)d, in which case

we set d̃(ωi, ωi+1) = ρh(ωi, ωi+1); or
(2) ωi, ωi+1 belong to the same orbit by the action Φ, and we define

d̃(ωi, ωi+1) := inf{‖v‖ : Φvωi, ωi+1} as the ‘vertical distance’ between ωi
and ωi+1 in M1.

Finally, consider the metric in M1 given by

d((x, t1, · · · , td), (y, s1, · · · , sd)) = inf

n−1∑
i=1

d̃(ωi, ωi+1),

where the infimum is taken over the space of previously defined admissible sequences
between (x, t1, · · · , td) and (y, s1, · · · , sd).

4.2. Characterization of expansive Rd-actions that are suspensions. This
section is devoted to the proof of the following characterization.

Theorem C. Let M be a compact Riemannian manifold and 1 : M → (0, ∞)d

be the roof function constant to one. A continuous Zd-action ϕ : Zd ×M → M is
expansive if and only if its suspension Rd-action Φ : Rd ×M1 →M1 is expansive.

Proof. Suppose that the action (Φv)v∈Rd is expansive (cf. Definition 2.4). So, given
0 < ε < 1

2 let δ > 0 be so that if x, y ∈M satisfy d(Φv(x), Φh(v)(y)) < δ for every
19



v ∈ Rd with respect to a continuous function h : Rd → Rd so that h(0) = 0,
then y = Φv0(x) for some ‖v0‖ < ε. We claim that the Zd-action ϕ is expansive.
Assume that x1, x2 ∈ M are such that ρ(ϕ(n1, ··· , nd)(x1), ϕ(n1, ··· , nd)(x2)) < δ for

all (n1, · · · , nd) ∈ Zd. If [t] denotes the integer part of t and {t1} = t − [t] is the
fractional part of t, for every t ∈ R, observe that

d(Φ(t1, ··· , td)(x1, 0, · · · , 0), Φ(t1, ··· , td)(x2, 0, · · · , 0))

= d(Φ([t1], ··· , [td])(x1, {t1}, · · · , {td}), Φ([t1], ··· , [td])(x2, {t1}, · · · , {td}))
≤ ρh(Φ([t1], ··· , [td])(x1, {t1}, · · · , {td}),

Φ([t1], ··· , [td])(x2, {t1}, · · · , {td}))

= ρh((f
[t1]
1 ◦ · · · ◦ f [td]

d (x1), {t1}, · · · , {td}),

(f
[t1]
1 ◦ · · · ◦ f [td]

d (x2), {t1}, · · · , {td}))

=
∑

σ∈{0, 1}d

(
d∏
i=1

σi · {ti}+ (1− σi) · (1− {ti})

)

· ρ(f
[t1]+σ1

1 ◦ · · · ◦ f [td]+σd
d (x1), f

[t1]+σ1

1 ◦ · · · ◦ f [td]+σd
d (x2))

<
∑

σ∈{0, 1}d

(
d∏
i=1

σi · {ti}+ (1− σi) · (1− {ti})

)
· δ = δ

for every (t1, . . . , td) ∈ Rd. The expansiveness condition assures that
(x2, 0, · · · , 0) = Φv0(x1, 0, · · · , 0) for some v0 ∈ Rd such that ‖v0‖ < ε < 1/2.
This implies that x1 = x2 and so the action ϕ : Zd ×M →M is expansive.

Conversely, suppose that ϕ is expansive. In particular ϕ is also expansive with
respect to the

ρ̃(x1, x2) = min
σ∈{0, 1}d

{ρ(fσ1
1 ◦ · · · ◦ f

σd
d (x1), fσ1

1 ◦ · · · ◦ f
σd
d (x2))}

and let ζ > 0 be such a constant of expansiveness. Given ε > 0 take 0 < δ <
min{ε, 1

4 , ζ}. Suppose that d(Φv(x1, t1, · · · , td), Φh(v)(x2, s1, · · · , sd)) < δ for

all v ∈ Rd and for some continuous map h : Rd → Rd such that h(0) = 0.
We may assume without loss of generality that y1 = (x1, 1/2, · · · , 1/2) and
y2 = (x2, s1, · · · , sd) in the coordinates of M × [0, 1]d (if y1 is not is in the form
(x1, 1/2, · · · , 1/2) just take ‖w‖ ≤ 1/2 such that Φw(y1) = (x1, 1/2, · · · , 1/2) and
consider the points Φw(y1) and Φh(w)(y2)). Observe that

ρ̃(x1, x2) ≤ d(y1, y2) = d(Φ0(y1), Φh(0)(y2)) < δ < 1/4.

Now, suppose that d(Φv(y1), Φh(v)(y2)) < δ < 1/4 for all v ∈ Rd. In
particular, taking v = ei (1 ≤ i ≤ d) it holds that ρ̃(fni (x1), fni (x2)) ≤
d(Φn·ei(y1), Φh(n·ei)(y2)) < δ < 1/4 for every n ∈ Z. Proceeding recursively, we
obtain that

ρ̃((fn1
1 ◦ · · · ◦ f

nd
d )(x1), (fn1

1 ◦ · · · ◦ f
nd
d )(x2))

≤ d(Φ(n1, ··· , nd)(y1), Φh(n1, ··· , nd)(y2)) < δ

for all (n1, · · · , nd) ∈ Zd. Finally, by the expansiveness of ϕ we obtain that x1 = x2,
implying in y2 = Φv(y1) for some v ∈ Rd such that ‖v‖ < δ < ε.

�
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5. Centralizer for expansive homogenenous Rd-actions

In this section first we prove that Rd-actions with expansive elements have
one dimensional orbits (Corollary B) and study the centralizer of homogeneous
expansive Rd-actions (Theorem B). In that follows, ‖ · ‖ will denote the Euclidean
norm in Rd.

5.1. Proof of Corollary B. Let M be a compact Riemannian manifold and let
Φ : Rd × M → M be a continuous action in M such that the flow (Φt v)t∈R is
Komuro-expansive for a fixed v ∈ Rd. Consider {v, u2, u3, · · · , ud} a basis of Rd
containing the vector v.

Observe that Φt v ◦ Φs ui = Φs ui ◦ Φt v for all t, s ∈ R and 2 ≤ i ≤ d. so,
by expansiveness of the flow (Φt v)t∈R, as a consequence of Theorem A for each
2 ≤ i ≤ d there exists a unique function Ai : X → R invariant along orbits of flow
(Φt v)t∈R and such that Φui(t, x) = Φv(Ai(x)t, x). Consequently,

Φ(t1v + t2u2 + · · ·+ tdud, x) = Φv((1 +A2(x) + · · ·+Ad(x))t, x),

which proves that all regular orbits of Φ are unidimensional. This completes the
proof of the corollary.

5.2. Proof of Theorem B. In this subsection we characterize the space of C1

Rd-actions Ψ that commute with an expansive C1 Rd-action Φ. Our purpose is to
prove that the action Ψ is a reparametrization of Φ: there exists a continuous map
A : M →Md×d(R) satisfying: (i) A(x) = A(Φv(x)) for every v ∈ Rd and x ∈ M ,
and (ii) Ψv(x) = Φ(A(x)v, x) for every (v, x) ∈ Rd×M (cf. Proposition 5.1 below).
Since the strategy of the proof is similar to the one of Theorem A we will sketch
the details and highlight the main differences. The starting point is the following
canonical form for commuting vector fields, similar to the tubular neighborhood
theorem.

Lemma 5.1 (Lee [25], Theorem 18.6). Let M be a smooth n-manifold, let d <
n and let Φ be a C1 Rd-action on M . Assume that Φ is generated by smooth
commuting linearly independent vector fields X1, · · · , Xd on some open subset W ⊆
M . For each p ∈W there exists an open neighborhood U of p, a C1-diffeomorphism
h : U → h(U) ⊂ Rn with coordinate functions h(q) = (s1(q), · · · , sn(q)) on U
and h(p) = 0 and such that Xi = h−1

∗
∂
∂si

for i = 1, · · · , d. If S ⊆ U is an embedded
codimension-d submanifold and q is a point of S such that TqS is complementary to
span(X1(q), · · · , Xd(q)) then the coordinates can be chosen such that S is defined
by the coordinates s1 = · · · = sd = 0.

The next lemma asserts that the leaves formed by the orbits of expansive Rd-
actions do not admit closed curves of arbitrarily small diameter. Since the proof of
the lemma is completely similar to the one of Lemma 3.2, making use of Lemma 5.1,
we shall omit it.

Lemma 5.2. If Φ : Rd×M →M is an C1 expansive homogeneous Rd-action, then

ε0(Φ) = inf{‖v‖ > 0 : v is period of a periodic orbit of Φ} > 0.

We should observe that if an Rd-action is not homogeneous then ε0(Φ) would be
zero. Moreover, the geometry of the space of orbits in the case of non-homogeneous
actions can be very complicated.
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Lemma 5.3. If Φ : Rd×M →M is an expansive C1-action and Ψ ∈ Z1(Φ) then,

for all 0 < ε < ε0(Φ)/3, there exists µ > 0 and a unique map z : Bµ(0) ×M →
Bε(0) ⊂ Rd such that Ψs(x) = Φ(z(s, x), x) for all (s, x) ∈ Bµ(0)×M . Moreover,

(I) z is a continuous map,

(II) If v, u, u+ v ∈ Bµ(0), then z(u+ v, x) = z(u, x) + z(v, Ψ(u, x)).

Proof. Although the proof is analogous to the one of Lemma 3.3, we include the
construction of the local reparametrization for completeness. Let ε0 > 0 as in
Lemma 5.2, take 0 < ε < ε0(Φ)/3 and let δ > 0 be given by expansiveness (recall
Definition 2.4). By compactness of M there exists µ > 0 such that if 0 < ε < ε0/3,
then

sup
‖u‖≤µ

{d(Id, Ψu)} < δ.

If ‖u‖ ≤ µ then d(Φv(x), Φv(Ψu(x))) = d(Ψ0(Φv(x)), Ψu(Φv(x))) < δ for all
(v, x) ∈ Rd ×M . Since Φ is an expansive action and d(Φv(x), Φh(v)(Ψu(x))) < δ

for all v ∈ Rd (with h = Id), there exists v0 ∈ Rd such that Φv0(Ψu(x)) = Φv0+η(x)
for some η ∈ Bε(0). This implies that Ψu(x) = Φη(x) for some vector η satisfying
‖η‖ < ε. In particular, Ψu(x) belongs to the orbit of x relative to the Rd-action Φ.

This defines a map z : Bµ(0) ×M → Bε(0) such that Ψ(u, x) = Φ(z(u, x), x)

for any (u, x) ∈ Bµ(0) × M . To prove the uniqueness, observe that if z1, z2 :

Bµ(0)×M → Bε(0) are such that Φ(z1(u, x), x) = Ψ(u, x) = Φ(z2(u, x), x), then
Φ(z1(u, x)−z2(u, x), x) = x where ‖z1(u, x)−z2(u, x)‖ ≤ ‖z1(u, x)‖+‖z2(u, x)‖ <
2 ε0(Φ)/3. Since this contradicts the existence of period smaller than ε0(Ψ) and
the uniqueness of z follows.The proof of the continuity is completely analogous to
the one of Lemma 3.3 and we shall omit it.

�

Next, we will construct an extension to Rd × M for the continuous
reparametrization described in Lemma 5.3. More precisely we have the following:

Lemma 5.4. If Φ : Rd ×M → M is a continuous action and Ψ : Rd ×M → M
is a continuous action such that for µ > 0 fixed there exists a reparametrization z :
Bµ(0)×M → Bε(0) such that Ψ(v, x) = Φ(z(v, x), x) for any (v, x) ∈ Bµ(0)×M ,
when 0 < ε < ε0(Φ)/3, then exists a unique continuous application p : Rd×M → Rd
where is extension of z and such that Ψ(s, x) = Φ(p(s, x), x) for all (s, x) ∈
Rd ×M .

Proof. The strategy of the proof is similar to the one of Proposition 3.1, that
is, to extend the local reparametrization given in Lemma 5.3 to an application
p : Rd ×M → Rd such that Ψ(s, x) = Φ(p(s, x), x) for all (s, x) ∈ Rd ×M . Due
to the higher dimensional setting, there are several ways of extending the domain
of the reparametrization to the euclidean space. The extension here is made radial
by considering observing vectors in Rd as multiples of vectors in the unit sphere
Sd−1. We shall sketch the main differences and omit some details. For this, let
µ > 0 be given by Lemma 5.3, let N ∈ N such that 2−N < µ and fix v ∈ Sd−1.
For each k ∈ N let Dk = {z ∈ Rd : k

2N
≤ ‖z‖ ≤ k+1

2N
}, which contain the vectors

of the form u = tv ∈ Rd for t ∈ [k/2N , (k + 1)/2N ] Now, consider the functions
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zk : Dk ×M → Rd given by

zk(t · v, x) = z((t− k/2N ) · v, x) +

k∑
i=1

z(1/2N · v,Ψ((t− i/2N ) · v, x)), (5.1)

for every k ∈ N. By Lemma 5.3 and the definition of zk, it follows that zk is
continuous and satisfies

zk
(k + 1

2N
· v, x

)
= zk+1

(k + 1

2N
· v, x

)
and Ψ(tv, x) = Φ(zk(tv, x), x) (5.2)

for all x ∈ M , k ∈ N and t ∈ [k/2N , (k + 1)/2N ]. This allows to define the
continuous map p : Rd ×M → Rd given by

p(t · v, x) =

{
z(t · v, x), if t ∈ [0, 1/2N ], v ∈ Sd−1

zk(t · v, x), if t ∈
[
k/2N , (k + 1)/2N

]
, v ∈ Sd−1, k ∈ N ,

The continuity of p follows from relation (5.2) and Lemma 5.3. Moreover, since
v ∈ Sd−1 was chosen arbitrary then Lemmas 5.3 and 5.4 imply that p satisfies
Ψ(t · v, x) = Φ(p(t · v, x), x) for all x ∈M , t ∈ R, v ∈ Sd−1.

To prove the uniqueness of the reparametrization p, assume that are continuous
reparametrizations p1, p2 : Rd × M → Rd that extend z and such that
Φ(p1(u, x), x) = Ψ(u, x) = Φ(p2(u, x), x) for any (u, x) ∈ Rd×M . Fix x ∈M and

let αx(u) = p1(u, x) − p2(u, x). Observe that α−1
x (0) ⊃ Bµ(0) and, consequently,

α−1
x (0) 6= ∅. Moreover, since αx is continuous then α−1

x (0) is a closed subset
of Rd. We claim that α−1

x (0) = Rd. If α−1
x (0) 6= Rd, there would be a unit

vector v ∈ Sd−1 and t0 = sup{t > 0 : t · v ∈ α−1
x (0)} < ∞. Since α−1

x (0) is
a closed subset then t0 · v ∈ α−1

x (0). Recalling the previous discussion, setting

x
′

= Ψ(p1(t0 · v, x), x) (= Ψ(p2(t0 · v, x), x)), it follows that αx′ is identically

zero in Bµ(0). Thus αx is identically zero in {t · v : t ∈ [0, t0 + µ]}, which
contradicts the maximality of t0. This proves the claim and the uniqueness of
the reparametrization. �

The next lemma will complete the proof of Theorem B.

Lemma 5.5. Let p be the reparametrization given by Lemma 5.4. Then p is
invariant along the orbits of Φ, that is, p(v, x) = p(v, Φ(u, x)) for all u, v ∈ Rd
and x ∈ M . Moreover, there exists a C1-map M 3 x 7→ A(x) ∈ Md×d(R) so that
p(v, x) = A(x)v for all x ∈M and v ∈ Rd.

Proof. The arguments of Lemma 3.4 yield Φ(p(v+u, x), x) = Φ(p(v, x)+p(u, x), x)
for every u, v ∈ Rd and x ∈ M . The uniqueness of p implies that p(v + u, x) =
p(v, x) + p(u, x) for all u, v ∈ Rd and x ∈M . By the later and the continuity of
p we conclude that there exists a continuous map M 3 x 7→ A(x) ∈ Md×d(R) so
that p(v, x) = A(x)v for all x ∈ M and v ∈ Rd. The differentiability of A follows
from the implicit function theorem as in the end of the proof of Theorem A. This
finishes the proof of the lemma. �

In the remaining of this section we provide a geometric characterization of the
linear reparametrization obtained in Theorem B, which is of independent interest
in the case of a C1 and expansive Rd-action on a compact manifold M of dimension
n larger than d. We prove that the reparametrization can be written as a matrix
of change of coordinates.
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Proposition 5.1. Let Φ : Rd ×M → M a C1-expansive and homogeneous action
and Ψ ∈ Z1(Φ) be such that Ψ(v, x) = Φ(A(x)v, x) for all v ∈ Rd and x ∈ M .

Considering the vector fields Xi(·) = dΦ(tei,·)
dt |t=0 and Yi(·) = dΨ(tei,·)

dt |t=0 for
every 1 ≤ i ≤ d, for each x ∈ M the linear map A(x) is represented by the matrix
of representation of the vectors (Yi(x))1≤i≤d on the basis (Xi(x))1≤i≤d.

Proof. The homogeneity assumption assures that the vector fields X1, · · · , Xd are
linearly independent. Fix x ∈ M . Up to a change of coordinates we may assume
without loss of generality that Φ is (locally) an Rd-action on an open set of Rn
(n = dimM) and that Xi(z) = ei for all 1 ≤ i ≤ d (< n). Indeed, Lemma 5.1
guarantees that there exists an open neighborhood Vx ⊂ M of x, and a change of
coordinates h : Vx → h(Vx) ⊂ Rn so that Xi = h−1

∗ ei for all 1 ≤ i ≤ d. and, still
denoting by Φ the induced action on hx(V ), one can write

Φ(v, z) = z +

d∑
i=1

vi ·Xi

for every z = h(x) ∈ Rd and every small values (vi)1≤i≤d such that Φ(v, z) belongs
to h(Vx). Reducing Vx if necessary, let δ > 0 be such that h(Vx) = [−δ, δ]n.

The first step in the proof of Theorem B implies that the orbits of Φ are fixed
by any element Ψ ∈ Z1(Φ). Moreover, since Φ restricted to each of its orbits is
generated by the d constant vector fields Xi(z) = ei (1 ≤ i ≤ d) then Φ acts in each
of its (local) orbits as a group of translations in Rd. Indeed, in the linearization
coordinates, the (local) orbit of z ∈ h(Vx) is F(z) = {w ∈ [−δ, δ]n : w = z +
tei for some 1 ≤ i ≤ d and t ∈ R}. Then, for any given small translation vector g in
F(z) ' Rd there exists a vector u = ug such that Φ(ug, z) = z + g. In resume, for
every z ∈ [−δ, δ]n the map Ψ |F(z) commutes with all local translations in F(z).

Now we prove that in these linearization coordinates the action Ψ ∈ Z1(Φ) is
also a translation along the orbit F(z). Since F(z) ' [−δ, δ]n ⊂ Rn this is an
immediate consequence of the following:

Claim: If f : Rd → Rd is C1 and commutes with all translations in Rd then f is
itself a translation in Rd.

Proof of the claim. One can write in coordinate functions

f(x1, x2, · · · , xd) = (f1(x1, x2, · · · , xd), · · · , fd(x1, x2, · · · , xd))

for (x1, x2, · · · , xd) ∈ Rd. Since f commutes with all the translations of form
x+λ ej , for x = (x1, · · · , xd), λ ∈ R and where {e1, · · · , ed} denotes the canonical
basis in Rd, then f(x+λ ej) = f(x)+λ ej . Analyzing each coordinate independently,
this means that fi(x + λ ej) = fi(x) + λ δij for all 1 ≤ i, j ≤ d, where δij = 1 if
i = j and δij = 0 otherwise. Thus,

∂fi
∂xj

(x) = lim
λ→0

fi(x+ λ ej)− fi(x)

λ
= δij

and, consequently, fi(x) = xi + ri for ri = fi(0) ∈ R. This guarantees
that f(x1, x2, · · · , xd) = (x1, x2, · · · , xd) + (r1, r2, · · · , rd) is a translation and
completes the proof of the claim.

�
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We are now in a position to complete the proof of the lemma. The previous claim
implies that Ψ(u, y) is a translation for all (u, y) ∈ U . In particular, if {u1, · · · , ud}
is a basis of Rd, the flows (Ψt·ui)t∈R are flows of translations. Indeed, by the group
property of (Ψt·ui)t∈R there exists a vector wi such that Ψt·ui(x) = x + twi and
consequently the d vector fields Y1, Y2, · · · , Yd defining Ψ are constant. Then, one
can write 

Y1 = a11X1 + a21X2 + · · ·+ ad1Xd

Y2 = a12X1 + a22X2 + · · ·+ ad2Xd

...
Yd = a1dX1 + a2dX2 + · · ·+ addXd

on U and let

A =


a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

. . .
...

ad1 ad2 · · · add

 .
Then, writting v =

∑d
i=1 riYi ∈ Rd as a linear combination of the vectors on the

base (Yi)1≤i≤d,

Ψ(v, z) = z +

d∑
j=1

rjYj = z +

d∑
j=1

rj

[ d∑
i=1

aijXi

]

= z +

d∑
i=1

[ d∑
j=1

rj aij

]
·Xi = z +Av = Φ(Av, z)

for all z ∈ U . This proves that A(x) = Dh(x)−1ADh(x) where A is the previous
matrix of change of coordinates that determines the action Ψ as reparametrization
of action Φ. This finishes the proof of the lemma. �

6. Examples and applications

This section is devoted to present some applications of our main results and a
discussion on other notions of expansiveness.

Example 6.1. (Suspension flows) Given a homeomorphism f : M → M on a
compact metric space M and a continuous roof function r : M → R+ that is
bounded away from zero consider the quotient space

Mr = {(x, s) ∈M × R+ : 0 ≤ s ≤ r(x)}/ ∼

obtained by the equivalence relation that (x, r(x)) ∼ (f(x), 0) for every x ∈ M .
The suspension flow (ϕt)t on Mr associated to (f,M, r) is defined by the “vertical
displacement” ϕt(x, s) = (x, t + s) whenever the expression is well defined. More

precisely, ϕt(x, s) =
(
fk(x), t + s −

∑k−1
j=0 r(f

j(x))
)

where k = k(x, t, s) ∈ Z is

determined by
∑k−1
j=0 r(f

j(x)) ≤ t + s <
∑k
j=0 r(f

j(x)). Clearly M × {0} is a

global cross-section to the flow. It follows from [11] that f is expansive if and only
if the flow (ϕt)t is C-expansive. In particular, from Theorem A, the suspension
flow of any expansive homeomorphism (e.g. quasi-Anosov diffeomorphisms with
intermittency) or Axiom A flows restricted to the non-wandering set have quasi-
trivial centralizers.
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Example 6.2. (Lorenz attractors) The Lorenz equations correspond to the system
of polynomial ordinary differential equations in R3

dx
dt = a(y − x)
dy
dt = −xz + rx− y
dz
dt = xy − bz

, (6.1)

with parameters a, b, r ∈ R. Computer simulations led Lorenz [22] to propose
the existence of a “strange attractor” for the parameters a = 10, b = 8/3 and
r = 28. For the classical parameters proposed by Lorenz, the three singularities of
the equation (6.1) are hyperbolic, and σ0 belongs to the “chaotic attractor” and
is accumulated by orbits of regular points. Simple computations yield that the

eigenvalues of σ0 are
−11−

√
1201

2
≈ −22, 83; − 8

3 ≈ −2, 67 and
−11 +

√
1201

2
≈

11, 83. By the symmetry of the equations (6.1), the eigenvalues of σ1 and σ2 are
the same. The singularity σ1 has a real eigenvalue λ ≈ −13, 85 and two complex
conjugates eigenvalues z, z̄ where z ≈ 0, 09 + 10, 19i. In particular the singularities
of (6.1) satisfy the non-ressonant conditions. Indeed, the singularity σ0 is non-
ressonant since the unstable subspace is one-dimensional and the stable subspace of
σ0 is non-ressonant because one eigenvalue is rational and the other is irrational.
Finally, the singularities σ1 and σ2 are non-ressonant since their stable subspace
is one-dimensional and has a pair of complex conjugate eigenvalues of along the
unstable subspace.

In order to be able to describe the dynamical features of the ‘chaotic
attractor’ associated to the ODE (6.1), geometric Lorenz attractors were introduced
independently in [1, 15] (see Figure 3 below). These form a parametrized family of
vector fields, whose parameters correspond to the real eigenvalues λ1 < λ2 < 0 <
−λ2 < λ3 at the singularity σ0 = (0, 0, 0).

3

2

1

+

_ Γ

R

R

Σ

Σ

S

λ

λ

λ

Figure 3. Geometric Lorenz attractor

There exists a C1-open subset of vector fields U ⊂ X∞(R3) and an open elipsoide
V ⊂ R3 containing the origin such that every X ∈ U exhibits a geometric Lorenz
attractor ΛX =

⋂
t≥0Xt(V ), which is a partially hyperbolic attractor and whose

restriction of the flow to the attractor is Komuro expansive (see e.g. [2] for precise
definitions and proofs). Such construction can be performed in an open domain of
a compact manifold M and if this is the case we will say that X ∈ X1(M) has a
geometric Lorenz attractor. Since the non-ressonance condition for the singularity
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σ0 is satisfied for both the original parameters proposed by Lorenz and is a C1-open
and C∞ dense condition on the space of vector fields in U , the following is an
immediate consequence of Theorem A:

Corollary 6.1. Let U ⊂ X∞(M) be an open set of vector fields so that every X ∈ U
has a geometric Lorenz attractor ΛX . Then there exists a C1-open and C∞-dense
subset U ′ ⊂ U so that, every vector field X ∈ U ′ admits a geometric Lorenz attractor
ΛX whose centralizer on its topological basin of attraction is trivial.

We observe that the argument used in the previous example extends to a more
general class of three-dimensional flows.

Example 6.3. (Robustly transitive three-dimensional sets) In [28], the authors
described the structure of all C1 robustly transitive sets with singularities for
flows on compact Riemannian three-dimensional manifolds. These are partially
hyperbolic attractors (or repellers) for the vector field with volume-expanding central
direction and have an invariant foliation whose leaves are forward contracted
by the flow, and has positive Lyapunov exponent at every orbit. These are
referred as singular-hyperbolic attractors or repellers. Singular-hyperbolicity is a
C1-open condition. Every singular-hyperbolic attractor is Komuro-expansive and
an homoclinic class (see [2]). So Theorem A implies there exists a C1-open and
C∞-dense subset of C∞ singular-hyperbolic attractors with quasi-trivial centralizer.

One should mention that the singularities of C1-robust Komuro expansive flows
are hyperbolic (cf. [24]). The following question arises naturally:

Question 1: Is the centralizer of Komuro expansive flows with isolated non-
hyperbolic singularities trivial?

The strategy used here can probably be applied to deal with other notions of
expansiveness. In [3], Artigue introduced some notions of expansiveness that we
now recall. A flow is called kinematic expansive if for all ε > 0 there exists δ > 0
such that if d(ϕt(x), ϕt(y)) < δ for all t ∈ R, then there exists s ∈ (−ε, ε) with y =
ϕs(x). A flow is strong kinematic expansive if every continuous reparametrization
of the flow is kinematic expansive or, equivalently, all topologically equivalent flows
are kinematic expansive. in [3], the author proves

K-expansive⇒ strong kinematic expansive⇒ kinematic expansive. (6.2)

Together with (2.1), the later implies that C-expansiveness implies on kinematic
expansiveness. By [3, Theorem 7.5], in the case of non-singular vector flows,
the notions of C1-robustly kinematic expansive, C1-robustly strong kinematic
expansive, C1-robustly expansive, K-expansive or C-expansive flows coincide.
Moreover, if this is the case such flows have a quasi-trivial centralizer [29]. The
next example illustrates that kinematic expansive flows without singularities have
quasi-trivial centralizer.

Example 6.4. (Kinematic expansive flow with quasi-trivial centralizer) Consider
S1 = R/Z and the flow ϕ on T2 obtained as the suspension flow of the identity
map on S1 by a smooth and positive smooth function r : S1 → (0,+∞) without any
plateau. The flow ϕ is kinematic expansive but is not strong kinematic expansive.
The proof of Lemma 3.3 carries on for kinematic expansive flows, which guarantees
that any element ψ of the C1-centralizer of ϕ is a locally a reparametrization of
ϕ. Moreover, since ϕ has no singularities, the arguments of Subsection 3.3 and 3.4
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yield that ψ is a linear reparametrization of ϕ. In other words, the centralizer of ϕ
is quasi-trivial.

Clearly the previous flow can be C1-approximated by a flow that is not kinematic
expansive. In the following example we describe the centralizer of an example of
strong kinematic expansive flow with a singularity.

Example 6.5. Consider an irrational flow on the two-dimensional torus T2 =
R2/Z2 with vector field X and let f be any non-negative smooth function f with just
one zero at some point p ∈ T2. The flow ϕ generated by the vector field fX is strong
kinematic expansive (cf. [3, Example 2.8]) (see Figure 1 below). Since this flow has
a non-hyperbolic singularity then Theorem A does not apply. In fact, although we do
not need this here, it is not hard to show that ϕ is not even Komuro expansive. We

Figure 4. Strong expansive flow on T2 with non-hyperbolic singularity

claim that Z1(ϕ) is trivial. In fact, if σ the unique singularity of ϕ and ψ ∈ Z1(ϕ)
then ψs(σ) = σ for all s ∈ R. In other words, σ is a singularity for ψ. Moreover,
ψ preserves the (ϕ-invariant) stable set Bs(σ) := {y ∈ T2 : d(ϕt(y), σ) → 0 as
t → +∞}. This set Bs(σ) is one dimensional it is formed by the orbit of any
point in Bs(σ) \ {σ}. As mentioned in the previous example, the arguments used
to deduce the existence and uniqueness of a continuous and ϕ-invariant function
A : T2 \{σ} → R so that ψt(x) = ϕA(x)t(x) for every x ∈ T2 \{σ} and t ∈ R. Now,

since Bs(σ) is dense in T2 and the function A is constant along orbits of ϕ then it
is constant in T2 \{σ}. Thus, A clearly extends to a constant function on the torus
T2, which proves that there exists c ∈ R so that ψt(x) = ϕct(x) for every x ∈ T2

and t ∈ R. In other words, the C1-centralizer of ϕ is trivial.

In view of the previous example it seems natural to ask the following:

Question 2: Do all strong kinematic expansive with singularities have trivial
centralizer?

Finally, we describe the centralizer of Anosov Rd-actions.

Example 6.6. (Anosov actions have quasi-trivial centralizer) Let M be a compact
Riemannian manifold and let Φ : Rd×M →M be an homogeneous Anosov action.
Here we show that Φ has a quasi-trivial centralizer, thus extending [18]. First we
claim that every Anosov Rd-action on a compact Riemannian manifold M is kinetic
expansive. This is probably well known but we could not find in the literature. Let
F be the Φ-orbit foliation. Then, there exists v ∈ Rd such that the diffeomorphism
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Φv is an Anosov element, hence normally hyperbolically. Let δ > 0 be given by
the plaque expansiveness of (Φv,F) (recall Subsection 2.1.1). Given ε > 0 let
δ = min{ε, δ} > 0 and assume that x, y ∈ M satisfy d(Φu(x), Φu(y)) < δ for
every u ∈ Rd. In particular, the orbits of x, y by Φv difer by at most δ (since
d(Φnv(x), Φnv(y)) < δ ≤ δ for all n ∈ Z). Moreover, the plaque expansiveness
condition implies that y ∈ F(x). This proves that y belongs to the orbit of x by Φ
and that d(x, y) < ε. Thus there exists a vector w ∈ Rd such that ||w|| < ε and
y = Φw(x), consequently the action Φ : Rd × M → M is expansive. Thus, the
ingredients in the proof of Theorem B allow to conclude that Φ has a quasi-trivial
centralizer.
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