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Abstract. The notions of shadowing, specification and gluing orbit property differ substantially for discrete and
continuous time dynamical systems. In the present paper we continue the study of the topological and ergodic
properties of continuous flows with the (reparametrized) periodic and nonperiodic gluing orbit properties initiated
in [4]. We prove these flows satisfy a weak mixing condition with respect to balls and, if the flow is Komuro
expansive, the topological entropy is a lower bound for the exponential growth rate of periodic orbits. Moreover,
we show that periodic measures are dense in the set of all invariant probability measures and that ergodic measures
are generic. Furthermore, we prove that irrational rotations and some minimal flows on tori and circle extensions
over expanding maps satisfy gluing orbit properties, thus emphasizing the difference of this property with respect
the notion of specification.

1. Introduction

The recent revived interest for specification properties in the last few years indicate that the original concept
of specification introduced by Bowen [6] is far from generating an old fashioned mechanism to study the
topological and ergodic features of the dynamical system. While the strong specification property fails to
extend beyond uniformly hyperbolic diffeomorphisms and flows (cf. [26, 27]) many other non-uniform notions
have been introduced to reflect non-uniform hyperbolicity (cf. [22, 20, 31, 21]). In the time-continuous setting
the property of specification is not satisfied even among uniformly hyperbolic basic sets since these may fail to
be topologically mixing. Indeed, any suspension flow obtained as the suspension of an Anosov diffeomorphism
with a constant roof function is clearly an Anosov flow, hence it is expansive and satisfies the shadowing
property, but it misses to be topologically mixing and therefore to satisfy the specification property. Since the
specification property has proved to be a very useful tool to study multifractal formalism, thermodynamical
formalism and large deviations it is important to create mechanisms that enable us to study these properties in
the setting of flows with some weak forms of hyperbolicity.

Motivated by the common features of uniformly hyperbolic flows, in [4] the first and third authors introduced
a concept of ‘gluing orbit property’ which is a topological invariant and much weaker than specification. Among
the mechanisms to construct continuous flows with the gluing orbit property we mention: (i) suspension flows
of homeomorphisms with the gluing orbit property or specification; and (ii) continuous flows with dense set
of periodic orbits and satisfying the shadowing property (see [4, 2] for more details). In this way it is possible
to provide vast classes of examples of continuous flows with this property, which includes e.g. a C0-generic
subset (hence dense) of Lipschitz vector fields [2].

It is well known that uniformly hyperbolic flows, hence strongly chaotic, have a rich structure on their
simplex of invariant probability measures and their thermodynamic formalism is well established [7, 24]. The
study of the ergodic properties of non-uniformly hyperbolic flows presents key difficulties either in the reduction
to the analysis of the discrete-time dynamics of Poincaré return maps, which creates discontinuities for the
discrete time dynamics, or by the presence of singularities. For that reason, an extension of such results for
wider classes of non-uniformly hyperbolic flows is still a challenge. Some recent contributions in this direction
include the fact that periodic measures are dense in the space of invariant probability measures for geodesic
flows on non-positively curved manifolds ([9]) and that flows and Hölder continuous potentials for which
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obstructions to expansiveness and specification have small topological pressure have unique equilibrium states
([8]).

In this paper our purpose is to study some topological and ergodic features of continuous flows with the
gluing orbit property and to establish their similitude and differences with respect to flows with specification
and also with discrete time dynamical systems. Our first main result is that these systems satisfy some positive
lower frequency of visits to balls and this frequency can be taken proportional to the radius of the balls. This
condition resembles a weak mixing condition on balls, although the gluing orbit property does not imply on
weak mixing (cf. Example 3.1). Moreover, despite the fact that the gluing orbit property need not imply on
positive topological entropy (cf. Example 3.2), if the entropy is positive then it implies the number of periodic
orbits to grow exponentially. Finally, if the flow is Komuro expansive (a weak notion of expansiveness that
allows the presence of singularities) then topological entropy coincides with the exponential growth rate of
periodic orbits and it can be computed in any open set. We refer the reader to Theorem A for the precise
statements. From the ergodic theory viewpoint, the space of invariant probability measures contains a dense
set of periodic measures and the ergodic measures are residual (Theorem B). In particular, we conclude this
is the case for continuous flows with the shadowing property and displaying a dense subset of periodic points
(Corollary 1). We also prove that the cohomology for continuous functions is determined by periodic orbits
(Corollary 2). Finally in Section 3 we relate positive entropy, the existence of periodic orbits, the specification
and the gluing orbit properties and include many examples (e.g. irrational flows on tori, suspension semiflows
over the Maneville-Pomeau map, circle extensions over expanding maps and polygonal billiards satisfy the
gluing orbit property). Indeed, although the product of dynamics with gluing may not satisfy the gluing orbit
property (cf. Example 3.3), the later holds for products of a map with specification and other with the gluing
orbit property. Furthermore, it is well known that every continuous flow with specification has positive entropy
and is mixing. This is not the case for flows with the gluing orbit property (see Section 3 for examples).

This paper is organized as follows. In Section 2 we discuss the features of discrete-time dynamical systems
with the specification property and state our main results for continuous flows with the gluing orbit property.
Section 3 is devoted to show some main differences between the concepts of gluing orbit property and specifi-
cation, and the relation of the former with the existence of periodic orbits and topological entropy. This is also
accomplished by some examples. Finally, in Section 4 we recall some necessary tools that will be used in the
proof of the main results, which appear in Section 5.

2. Statement of the results

This section is devoted to the statement of the main results. In order to establish a comparison between
discrete-time and continuous-time dynamics, first we give a brief description on the topological notions of
specification, shadowing, and mixing for discrete-time dynamical systems and then state our main results.
Throughout the article, except if otherwise stated, we assume that M is a compact and connected Riemannian
manifold and d is the distance on the manifold M induced by the Riemannian structure. Although a large part
of the arguments hold on compact and connected metric spaces, assuming that M is a Riemmanian manifold
allows some of the statements to become clearer and to deduce stronger consequences (see the discussion right
after Theorem A).

2.1. Discrete-time dynamical systems. The classical notions of shadowing and specification are two impor-
tant measurements of topological chaoticity in dynamics and its relation is rather well understood for discrete
time dynamics. For instance, Bowen proved that specification implies on topological mixing and that any topo-
logically mixing homeomorphism with the shadowing property satisfies the specification (we refer the reader
e.g. to [10] for definitions and proofs of these results). Moreover, for continuous maps on compact metric
spaces:

• specification implies the periodic probability measures are dense and full supported, non-atomic, zero
entropy and ergodic measures forms a residual subset of the set of invariant measures (see e.g. [24])
• specification implies periodic probability measures are dense in the set of invariant measures that give

full weight to the support of a hyperbolic measure (see e.g. [18, 19])
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• specification implies the Birkhoff irregular points are either empty or carry full topological pressure
[30]
• specification implies the space of invariant measures is the Poulsen simplex (see e.g. [12]) 1

• shadowing implies that specification is equivalent to topologically mixing (see e.g. [16])
• weak shadowing implies on uniform positive entropy (see e.g. [16])

It is known that topologically mixing uniformly hyperbolic sets have the specification property, that C1 open
subsets of diffeomorphisms with the specification property consist of Anosov diffeomorphisms and that speci-
fication is rare among C1 partially hyperbolic diffeomorphisms (see e.g. the introduction of [26] and references
therein). For the later reason, weaker forms of specification should be considered to deal with dynamical
systems that are not hyperbolic.

In [4] the first and third authors introduced a notion of gluing orbit property for homeomorphisms and
flows (see Section 4 for the definition) which is weaker than specification. Afterwards, we learned that Sun
and Tian [29] introduced an identical notion for C1-diffeomorphisms which they called transitive specification
property. Since the notion of specification implies topological mixing we opt to refer to these as gluing orbit
properties (we refer to Section 4 for the definition).

2.2. Statement of the main results. A main purpose in this paper is describe the topological properties of
continuous flows with the reparametrized gluing orbit property. In opposition to dynamics with specification,
there are flows with the gluing orbit property that are not topologically mixing and have no positive topological
entropy. Indeed, suspension flows over irrational rotations on the circle have zero entropy but satisfy the gluing
orbit property (see Example 3.1). This shows that the gluing orbit property is much more embracing than
previous notions of specification. Moreover, there are also flows with the shadowing property and dense set
of periodic points that are not topologically mixing, hence cannot satisfy specification (e.g. every constant
time suspension flow of a toral Anosov diffeomorphism), and have the reparametrized gluing orbit property (cf.
[2, Theorem 1]). This illustrates that the gluing orbit properties are reasonably mild properties and that may
not have such a strong connection with the shadowing property as for discrete-time dynamics. Our first result
asserts that flows with the gluing orbit property still have some chaotic features (see Section 4 for definitions).

Theorem A. Let M be a compact and connected Riemmanian manifold. Assume that (Xt)t is a continuous flow
on M generated by a Lipschitz vector field X : M → T M and that M is not reduced to a periodic orbit of (Xt)t.
If (Xt)t satisfies the reparametrized gluing orbit property then:

(1) (Xt)t has positive lower frequency of visits to balls;
(2) (Xt)t has super-linear lower asymptotic mixing rates on the family of balls
B = {B(x, ε) : x ∈ Per((Xt)t), ε > 0};

If the flow satisfies the periodic reparametrized gluing orbit property then
(3) htop((Xt)t) ≤ lim supT→∞

1
T log #P((Xt)t,T ) where P((Xt)t,T ) denotes the number of periodic orbits of

period smaller or equal to T; and
(4) if, in addition, the flow (Xt)t is Komuro expansive then

(i) htop((Xt)t) = lim supT→∞
1
T log #P((Xt)t,T ) and

(ii) every point in M is an entropy point for the flow (Xt)t.

We notice that if the reparametrized gluing orbit property assumption is replaced by the gluing orbit property
then item (4.ii) in the theorem remains valid even if (Xt)t is not Komuro expansive. More precisely, every point
is an entropy point for continuous flows with the gluing orbit property (cf. proof of item 4(ii) of the theorem and
Remark 5.1). Reparametrizations are allowed in order to include larger classes of dynamical systems. Finally,
the Riemannian structure and the Lipschitz regularity are only used to deduce precise estimates on some rates
in items (1) and (2) above, while non-explicit bounds and items (3)-(4) can be proven for continuous flows on
more general compact metric spaces.

1Poulsen (1961) found a simplex K whose extremal points E(K) are dense, a Gδ-set and arcwise connected. Lindenstrauss, Olsen,
Sternberg (1987) proved that the Poulsen simplex is unique with respect to affine homeomorphisms.
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Our second main result describes the space of invariant probability measures for flows with the gluing orbit
property. The following result extends a classical result by Sigmund [24] from continuous maps with specifi-
cation to continuous flows with the reparametrized gluing orbit property (see Section 4 for definitions). Given
a continuous flow (Xt)t on M, letM1((Xt)t) stand for the space of (Xt)t-invariant probability measures.

Theorem B. Let (M, d) be a compact and connected metric space. If a continuous flow (Xt)t on M satisfies the
periodic reparametrized gluing orbit property then periodic measures are dense inM1((Xt)t), and the ergodic
measures form a residual subset of the set of invariant probability measures.

This result was known to hold for for basic pieces of Axiom A flows (cf. [25]). One should mention that
the statement and proof of the previous theorem extend trivially for the context of continuous maps with the
gluing orbit property, which corresponds to the simpler case where the dynamics is not reparametrized. As an
immediate consequence we relate the denseness of periodic points on the ambient space with the denseness of
the periodic measures in the space of invariant probability measures.

Corollary 1. Let (Xt)t be a continuous flow on a compact and connected manifold M satisfying the periodic
shadowing property. If periodic orbits are dense in M then the set of periodic measures is dense inM1((Xt)t).
Conversely, if periodic measures are dense in M1((Xt)t) then periodic points are dense in the union of the
supports of ergodic measures.

Finally, inspired by similar results for discrete-time dynamics (see e.g. [30]) we prove that cohomology is
detected by invariant measures and periodic points.

Corollary 2. Let (Xt)t be a continuous flow with the periodic reparametrized gluing orbit property and let
φ : M → R be a continuous observable. Then, the following are equivalent:

(1) infµ∈M1((Xt)t)
∫
φ dµ < supµ∈M1((Xt)t)

∫
φ dµ;

(2) there exist periodic orbits p, q ∈ M for (Xt)t so that
∫
φ dµp <

∫
φ dµq, where µp =

∫ π(p)
0 δXs(p) ds for

every periodic orbit p for the flow with period π(p) > 0; and
(3) there exists x ∈ M so that the time averages

(
1
t

∫ t
0 φ(Xs(x)) ds

)
t≥0

do not converge.

Concerning the previous corollary, one should refer that the existence of periodic orbits in the gluing orbit
process is needed only for item (2) above. Secondly, it is clear that the previous theorem opens the way to
the study of multifractal analysis for flows with the gluing orbit property. In particular, under the previous
conditions, one expects the Birkhoff irregular set to be either empty or a Baire generic subset of M.

Remark 2.1. Given an observable φ : M → R consider ψ(x) :=
∫ 1

0 φ(Xs(x))ds and the time-1 map f := X1.
Note that

lim
t→∞

1
t

∫ t

0
φ(Xs(x)) = c if only if lim

n→∞

1
n

n−1∑
i=0

ψ( f i) = c.

On the other hand, it follows from [30, Lemma 1.6] that the items of the previous corollary are equivalent to
ψ < Cob(M, f , c) (the closure is considered in the C0-topology) where Cob(M, f , c) is the space of continuous
functions g : M → R so that there exists u ∈ C(M,R) with g = u − u ◦ f + c.

Remark 2.2. It is straightforward to deduce the analogous version of the main results for diffeomorphisms with
the gluing orbit property. Indeed, computations are simpler and correspond in rough terms to the case where
the reparametrization coincides with the identity map.

3. Examples

There are many evidences that relate specification and uniform hyperbolicity. The next example illustrates
that the gluing orbit property is a much weaker condition than specification. It implies neither positive topolog-
ical entropy nor the dynamics to be topologically mixing.
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Example 3.1. Consider the circle S1 = R/Z. Given α ∈ R \ Q let f = fα : S1 → S1 denote the irrational
rotation of angle α given by f (x) = x + α (mod 1) for every x ∈ S1. It well known that all orbits are dense in
the circle and that f has zero topological entropy. We proceed to prove that f satisfies the gluing orbit property:
for every ε > 0 there exists K(ε) > 0 so that for any points x1, . . . , xk ∈ S

1 and times n1, . . . , nk ≥ 0 there are
p1, . . . , pk−1 ≤ K(ε) and a point y ∈ S1 so that

y ∈ B(x1, n1, ε) := {x ∈ S1 : d( f j(x), f j(x1)) ≤ ε for all 0 ≤ j ≤ n1 − 1}

and f
∑i

j=1 p j+n j(y) ∈ B(xi+1, ni+1, ε), for all i = 1, . . . , k − 1.
Since f is an isometry, for every x ∈ S1, n ≥ 1 and ε > 0 the dynamical ball B(x, n, ε) coincides with the ball

B(x, ε) of radius ε around x, and also f j(B(x, n, ε)) = B( f j(x), ε) for every j ∈ Z. In order to prove the gluing
orbit property it is enough to show the following:

Claim: For every ε > 0 there exists K(ε) > 0 so that for all z,w ∈ S1 there exists p ≤ K(ε) such that
f p(z) ∈ B(w, ε).

Indeed, assuming the claim, given x1, . . . , xk ∈ S
1, integers n1, . . . , nk ≥ 0 and ε > 0, choose y = x1.

Obviously y ∈ B(x1, n1, ε). Using that f is an isometry and the claim (with z = f n1(y) and w = x2), there exists
p1 ≤ K(ε) such that f p1+n1(y) ∈ B(x2, ε) = B(x2, n2, ε) . Using the claim once more with z = f n2+p1+n1(y)
and w = x3, there exists p2 ≤ K(ε) so that f p2+n2+p1+n1(y) ∈ B(x3, n3, ε). Using this argument recursively we
conclude that f satisfies the gluing orbit property. Thus, we are left to prove the claim.

Proof of the Claim. Given ε > 0, let n ≥ 0 be the unique integer determined by nε/2 ≤ 1 < (n+1)ε/2. Then the
closed balls of radius ε/2 centered at the points xi := iε/2, for i = 0, . . . n, cover the circle S1. By transitiveness,
for every 0 ≤ i ≤ n there exists ni ≥ 0 with f ni(0) ∈ B(iε/2, ε/2). Since B( f ni(0), ε) ⊃ B(iε/2, ε/2) and
S1 =

⋃n
i=0 B(iε/2, ε/2) it follows that

⋃K(ε)
j=0 B( f j(0), ε) = S1 for K(ε) := max0≤i≤n{ni}. Since f is an isometry

and order preserving a simple argument shows that
⋃K(ε)

j=0 B( f j(x), ε) = S1, for every x ∈ S1. Then, it is clear
that for any z,w ∈ S1 there exists p ≤ K(ε) such that w ∈ B( f p(z), ε), which proves the claim. �

We now prove that every irrational flow on the torus T2 has the gluing orbit property.

Example 3.2. Given α < Q consider the irrational translation flow on the torus T2 = S1 × S1 defined by
the ordinary differential equation dx

dt = (1, α). This flow admits a global cross section and is modeled as a
suspension flow over the irrational rotation x 7→ x + α on the circle with constant roof function (see e.g. [11]).
Since the irrational rotation satisfies the gluing orbit property then so does the irrational flow (cf. [4]). However,
these flows have zero topological entropy as a consequence of the variational principle and Abramov’s formula.

The next example illustrates that the product of dynamics with the gluing orbit property need not have the
same property. By [4], suspension flows of maps with the gluing orbit property also inherit this property. For
that reason we shall focus on discrete time dynamical systems.

Example 3.3. Let fα be an irrational rotation on the circle S1 and consider the diffeomorphism F on the torus
T2 = S1 × S1 given by F(x, y) = ( fα(x), fα(y)). Since fα is an isometry then for any ε > 0 the set ∆ = {(x, y) ∈
T2 : |x − y| ≤ ε} is F-invariant. This implies that F is not transitive, hence it does not satisfy the gluing orbit
property.

In what follows we give a criterium to produce examples of dynamics with the gluing orbit property.

Example 3.4. Let (M, dM) and (N, dN) be compact metric spaces, and let f : M → M and g : N → N be
continuous maps such that f satisfies the specification property and g has the gluing orbit property. We claim
that the product map F : M × N → M × N given by (x, y) 7→ ( f (x), g(y)) has the gluing orbit property. Indeed,
given ε > 0 let L = L(ε) ≥ 1 be given by the specification property of f and K = K(ε) ≥ 1 be given by the
gluing orbit property for g. Set T = T (ε) = K + L ≥ 1. Given (x1, y1), . . . , (xk, yk) ∈ M × N and n1, . . . , nk ≥ 0,
as g has gluing orbit property, there exists y ∈ N and p1, . . . , pk−1 ≤ K(ε) such that

dN(gn(y)), gn(y1)) < ε ∀0 ≤ n ≤ n1 + L
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and
dN(gn+

∑i−1
j=1 p j+n j(y), gn(yi)) < ε ∀0 ≤ n ≤ ni + L

for every 2 ≤ i ≤ k (in other words, y shadows pieces of orbits of size ni+L for the point yi). By the specification
property of f , using gap sizes (L + pi)i=1k , there exists x ∈ M such that

dM( f n(x)), f n(x1)) < ε ∀0 ≤ n ≤ n1

and
dM( f n+

∑i−1
j=1 L+p j+n j(x), f n(xi)) < ε ∀0 ≤ n ≤ ni

for every 2 ≤ i ≤ k. Putting altogether, for each 2 ≤ i ≤ k,

d(Fn(x, y)), Fn(x1, y1)) < ε for every 0 ≤ n ≤ n1

and
d(Fn+

∑i−1
j=1(L+p j+n j)(x, y), Fn(xi, yi)) < ε for every 0 ≤ n ≤ ni

where we consider the distance d((x1, y1), (x2, y2)) := max{dM(x1, x2), dN(y1, y2)}. Since each time L + p j is
bounded above by L + K(ε) we conclude that the product map F has the periodic gluing orbit property.

A question that arises naturally is wether dynamics with the gluing orbit property and positive topological
entropy have the specification property. This is not the case as shown in the next example.

Example 3.5. Consider the torus T3 = T2 × S1. Let A : T2 → T2 be a linear Anosov diffeomorphism and fix
α < Q. The C1 diffeomorphism F : T3 → T3 given by F(x, y, z) = (A(x, y), z+α( mod 1)) is a transitive strongly
partially hyperbolic diffeomorphism (see e.g. [27] for the definition of partial hyperbolicity). Moreover, since
transitive Anosov diffeomorphisms satisfy the specification property, the criterium given in Example 3.4 implies
that F satisfies the gluing orbit property. Furthermore, it is clear that htop(F) = log 2 > 0 while there are no
periodic points for F.

In what follows we provide examples of dynamics with positive entropy, dense periodic orbits and satisfying
the gluing orbit property.

Example 3.6. Set T2 = S1 × S1 and consider the positive entropy skew-product map F : T2 → T2 given by
F(x, y) = ( f (x), g(x, y)) = (2x (mod 1), y + x (mod 1)) for all (x, y) ∈ T2. The periodic points for the doubling
map f are dense in S1. If x ∈ S1 is a periodic point of period π(x) ≥ 1 for the doubling map f (in particular x is
rational) then Fπ(x) preserves the circle {x} × S1 whose dynamics

Fπ(x)(x, y) =
(
x, y +

π(x)−1∑
j=0

2 jx ( mod 1)
)

corresponds to a rotation of rational angle in the circle. In consequence all points in the circle {x} × S1 are
periodic for F and the periodic points for F form a dense subset of T2. We claim that F satisfies the gluing
orbit property. Using that F factors over the doubling map and the fiber dynamics is given by isometries, for
any (x, y) ∈ T2 and ε > 0,

B2((x, y), n, ε) = B1(x, 2−nε) × B1(y, ε) and Fn(B2((x, y), n, ε))) =
⋃

z∈B1( f n(x),ε)

B1(z∗, ε)

where z∗ = Fn(z̃, y) and z̃ ∈ B1(x, 2−nε) is uniquely determined by f n(z̃) = z (here B1 denotes a ball with respect
to the usual metric on S1). A simple modification of the argument used in the proof of the Claim in Example 3.1
also yields that for any ε > 0 that is rationally independent with the fiber rotations (e.g. ε ∈

√
2Q+) there exists

N(ε) ≥ 1 such that
N(ε)⋃
j=0

B2((x, y), n, ε))) = T2,

which ultimately implies that F satisfies the gluing orbit property.
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If h : T2 → R+ is any Hölder continuous roof function bounded away from zero so that h(x, y) = h(x, z) for
all x, y, z ∈ S1 then the suspension flow (Xt)t over F with roof function h satisfies the gluing orbit property (cf.
[4, Theorem F]). Theorems A and B imply that

0 < htop((Xt)t) ≤ lim sup
T→∞

1
T

log #P((Xt)t,T ),

and the set of all periodic probability measures is dense inM1((Xt)t).

4. Preliminaries

In the present section we introduce the necessary terminology and recall some results that will be needed.
Throughout this section assume (M, d) is a compact and connected metric space.

4.1. Invariant and empirical measures. We writeM1(M) for the space of all Borel probability measures on
a compact metric space (M, d). The spaceM1(M) provided with the weak* topology is a complete metrizable
topological space. We shall consider onM1(M) the Prohorov metric ρ defined by:

ρ(µ, ν) = inf{ε > 0 : µ(A) ≤ ν(Aε) + ε, for every Borel set A ⊂ M},

where Aε = {x ∈ M : d(x, A) < ε} and µ, ν ∈ M1(M) (see [23]). Let (Xt)t be a continuous flow on M. Let
M1((Xt)t) stand for the space of (Xt)t-invariant probability measures. We writeMe

1((Xt)t) for the subset of all
ergodic measures. As M is compact the space of invariant probability measuresM1((Xt)t) is non-empty and is
the closure of the convex hull of the ergodic measuresMe

1((Xt)t). Thus, M1((Xt)t) is residual if, and only if,
it is a dense Gδ. Invariant measures are often constructed using accumulation of empirical measures, that is,
measures obtained by averaging along the orbit of a starting point. Since we deal with reparametrized flows we
will consider the following two notions.

Definition 4.1. Given x ∈ M and T ∈ R+, we shall consider the T -empirical measure of x, m(x,T ) defined, for
each Borel set A ⊂ M, by

m(x,T )(A) =
1
T

∫ T

0
δXs(x)(A) ds,

where δx stands for the Dirac measure supported on x. Given x ∈ M, ε > 0, τ ∈ Rep(ε) and T,T0 ∈ R
+, we

shall consider the T -reparametrized empirical measure of x, m(x,T,T0, τ) defined, for each Borel set A ⊂ M,
by

m(x,T,T0, τ)(A) =
1

τ(T ) − τ(T0)

∫ τ(T )

τ(T0)
δXs(x)(A) ds.

We say that a point x ∈ M is generic for a measure µ ∈ M1((Xt)t) if the empirical measures m(x,T ) converge
to µ, in the weak* topology, as T → ∞.

We say that x ∈ M is a periodic point of the flow (Xt)t if there exists t ∈ R+ so that Xt(x) = x. The smallest
t0 > 0 satisfying the condition above is called minimal period of x; in this case we say that the orbit of x is a
closed orbit of period t0. We shall write Per((Xt)t) for the set of all closed orbits. It is clear that if x is a periodic
point for the flow (Xt)t with minimal period t0, then the measure γ(x) = m(x, t0) is invariant for (Xt)t. The set
of all measures of this form will be denoted byMco

1 ((Xt)t).

4.2. Topological entropy, entropy points and expansiveness. In this subsection we first recall the notion
of topological entropy and entropy point for flows. Let (Xt)t be a continuous flow on a compact metric
space (M, d). Given T, ε > 0, two points x, y in M are (T, ε)-separated if there exists 0 ≤ s ≤ T so that
d(Xs(x), Xs(y)) > ε. Given E ⊂ M, let s(T, ε, E) denote the maximal cardinality of a (T, ε)-separated set in E.
The limit

h((Xt)t, E) = lim
ε→0

lim sup
T→∞

1
T

log s(T, ε, E) (4.1)
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is well defined by monotonicity on ε. The topological entropy htop((Xt)t) of the flow (Xt)t is defined by (4.1) in
the case that E = M (see e.g. [7]). In this setting, we define by B(x,T, ε) = {y ∈ M : d(Xs(x), Xs(y)) < ε, ∀0 ≤
s ≤ T } the dynamical ball of length T and size ε centered at x.

We say that x0 ∈ M is an entropy point for (Xt)t if the equality h((Xt)t,U) = htop((Xt)t) holds for any open
neighbourhood U of x0. Entropy points are those for which the complexity at every local neighborhood reflects
the topological complexity of the entire dynamical system. Any finitely generated group acting by a continuous
action on a compact metric space M admits an entropy point (see [3]).

Expansive homeomorphisms with specification have positive topological entropy and it coincides with the
exponential growth rate of periodic points. Some subtleties arise in the definition of expansiveness for flows,
mainly in the presence of singularities. We recall the notion of Komuro expansiveness.

Definition 4.2. Let (M, d) be a compact metric space, (Xt)t a continuous flow on M, and Λ ⊆ M a compact
ϕ-invariant set. We say that the flow (Xt)t is Komuro-expansive in Λ if for any ε > 0 there exists δ > 0 so that if
x, y ∈ Λ and d(Xt(x), Xh(t)(y)) < δ for every t ∈ R and some increasing homeomorphism h : R → R then there
is t0 ∈ R such that Xh(t0)(y) ∈ X[t0−ε, t0+ε](x). Here, as usual, X[t0−ε, t0+ε](x) := {Xt(x) : t ∈ [t0 − ε, t0 + ε]}.

4.3. Shadowing and gluing orbit properties. The following definition was introduced in [29] (with the ter-
minology of transitive specification property) and independently in [4] for homeomorphisms and flows.

Definition 4.3. Given an homeomorphism f ∈ Homeo(M) on a compact metric space (M, d) we say that f has
the gluing orbit property if for any ε > 0 there exists K = K(ε) ∈ R+ such that for any points x0, x1, . . . , xk ∈ M
and positive integers n0, n1, . . . , nk ≥ 1 there are p0, p1, . . . , pk−1 ≤ K(ε) and y ∈ M so that

d( f k(y), f k(x0)) < ε ∀1 ≤ k ≤ n0

and

d( f k+
∑i−1

j=0(p j+n j)(y), f k(xi)) < ε ∀1 ≤ k ≤ ni

for every 1 ≤ i ≤ k.

Let (Xt)t be a continuous flow on a compact metric space (M, d). Given δ > 0 and T ≥ 1, we say that a
sequence (xi, ti)i=1... j of pairs in M×R+ forms a (δ,T )-pseudo-orbit for (Xt)t if 1 ≤ ti ≤ T and d(Xti(xi), xi+1) < δ
for every i = 1, ..., j−1. In our time continuous setting the shadowing property should reflect the speed at which
different points travel in their trajectories. For that reason we need to consider orbits up to reparametrization. By
Rep we denote the set of all increasing homeomorphisms τ : R → R, (reparametrizations) satisfying τ(0) = 0.
Fixing ε > 0, we define the set

Rep(ε) =

{
τ ∈ Rep :

∣∣∣∣∣τ(t) − τ(s)
t − s

− 1
∣∣∣∣∣ < ε, s, t ∈ R

}
.

In rought terms, a reparametrization τ ∈ Rep belongs to Rep(ε) whenever it is ε-close to the identity in the
sense that the slopes formed by any two points in its graph belong to the interval (1 − ε, 1 + ε). This is the case
e.g. if τ is C1-smooth with derivative everywhere in the interval (1− ε, 1 + ε). Given a sequence (ti)

j
i=0 we write

t0 = 0, σ(n) = t0 + t1 + . . . + tn−1 and σ(0) = 0. Given t ∈ R, let x0 ? t denote the point

x0 ? t = Xt−σ(i)(xi) if σ(i) ≤ t < σ(i + 1).

Definition 4.4. We say that the continuous flow (Xt)t satisfies the shadowing property if, for any ε > 0 and
T ≥ 1 there exists δ = δ(ε,T ) > 0 such that for any (δ,T )-pseudo-orbit (xi, ti)

j
i=1 there exists x̃ ∈ M and a

reparametrization τ ∈ Rep(ε) such that

d(Xτ(t)(x̃), x0 ? t) < ε, for every t ∈ [0, σ( j)]. (4.2)

For simplicity, we say that the (δ,T )-pseudo-orbit (xi, ti)
j
i=1 is ε-shadowed by x̃ if (4.2) holds. In what follows

we recall the notion of reparametrized gluing orbit property, introduced in [4, 2].
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Definition 4.5. Let (Xt)t be a continuous flow on a compact metric space (M, d). We say that (Xt)t has the
reparametrized gluing property if for any ε > 0 there exists K = K(ε) ∈ R+ such that for any points
x0, x1, . . . , xk ∈ M and times t0, t1, . . . , tk ≥ 0 there are p0, p1, . . . , pk−1 ≤ K(ε), a reparametrization τ ∈ Rep(ε)
and a point y ∈ M so that

d(Xτ(t)(y)), Xt(x0)) < ε ∀t ∈ [0, t0]

and
d(Xτ(t+

∑i−1
j=0 p j+t j)(y), Xt(xi)) < ε ∀t ∈ [0, ti]

for every 1 ≤ i ≤ k. If, in addition, the point y can be taken periodic (i.e. Xτ(
∑k

j=0 p j+t j)(y) = y for some
pk ≤ K(ε)) we say that (Xt)t satisfies the periodic reparametrized gluing orbit property.

Remark 4.6. By the choice of the class of reparametrizations Rep(ε) we have the following property: τ(t+ p1)−
τ(t) ≤ (1 + ε)p1 ≤ (1 + ε)K(ε), for every τ ∈ Rep(ε).

One should refer that, similar to what happens with the notion of shadowing and specification, if the gluing
orbit property holds for a C1-open set of diffeomorphism (resp. vector fields) then these generate topologically
C1 Anosov diffeomorphism (resp. flows) (see [29, 4]).

4.4. Strong transitivity and asymptotic mixing rates. We introduce some notions of transitivity and recur-
rence for continuous flows in order to establish a comparison with other topological notions of chaoticity.

Definition 4.7. Let (Xt)t be a continuous flow on a compact metric space M. We say that:
(1) (Xt)t is topologically mixing, if for any open sets U,V there exists T > 0 so that X−t(U) ∩ V , ∅ for

every t ≥ T ;
(2) (Xt)t has positive lower frequency of visits to balls if for every ε > 0 and for any two balls B1, B2 of

radius ε

lim inf
t→+∞

1
t

Leb(s ∈ [0, t] : B1 ∩ X−s(B2) , ∅) > 0

(3) (Xt)t has lower asymptotic mixing rate on the family B of balls if for any B(x1, ε), B(x2, ε) ∈ B there
exists a constant τ = τ(x2, ε) > 0 so that

lim inf
t→+∞

1
t

Leb(s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅) ≥ τ(x2, ε) > 0;

(4) (Xt)t has super-linear lower asymptotic mixing rate on the family B of balls if for any center x2 that is
a center of a ball in B there exists C(x2) > 0 so that τ(x2, ε) ≥ C(x2)ε.

If a continuous flow is topologically mixing then it is clear that the limit defined in the left hand side of
the expression in Definition 4.7 (2) is equal to one. We recall a criterium established in [2] for proving that a
continuous flow has the reparametrized gluing orbit property:

Theorem 4.8. [2, Theorem 1] Let (Xt)t be a continuous flow on a compact and connected metric space M
satisfying the (periodic) shadowing property and displaying a dense set of periodic orbits. Then (Xt)t has the
(periodic) reparametrized gluing orbit property.

5. Proofs

5.1. Proof of Theorem A. Let (Xt)t be a continuous flow on the compact and connected Riemannian manifold
M with the periodic reparametrized gluing orbit property. For the purpose of analyzing local trajectories of
the flow we may assume without loss of generality that the flow evolves on Rn (this is always the case up to
consider some local chart). Since (Xt)t is the flow obtained by the solutions of the ordinary differential equation
u′ = X(u) then

(Xt)′(x) = X(Xt(x)) and X0(x) = x.

or, equivalently, Xt(x) = x +
∫ t

0 X(Xs(x)) ds. Let L > 0 be a Lipschitz constant for X.
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Proof of (1): Consider arbitrary ε > 0 and 0 < ε′ < ε, and let s(ε′) = (1+ε′)K(ε′) be given by the reparametrized
gluing orbit property for ε′. Consider the balls Bi = B(xi, ε

′) around xi ∈ M, for i = 1, 2. If there exists T > 0
so that Xt(B1) ∩ B2 , ∅ for every t ≥ T then it is clear that

lim inf
t→+∞

1
t

Leb
(
s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅

)
= 1

which proves (1) in this case. Otherwise, there exist sequences (ti)i and (ei)i converging to infinite so that
ti < ei < ti+1, that Xti(B1) ∩ B2 , ∅ and Xei(B1) ∩ B2 = ∅ for every i ≥ 1. Indeed, by the reparametrized
gluing orbit property one can choose the sequence (ti)i≥1 so that |ti+1 − ti| < s(ε′) for every i ≥ 1. Moreover, if
y ∈ B(x, ε′) then one can use that

‖Xs(y) − x‖ ≤ ‖x − y‖ + ‖X‖∞|s| (5.1)

to deduce that Xs(y) ∈ B(x, ε) for all |s| ≤ ε−ε′

||X||∞
. Given t > s(ε′) let n(t, ε′) ∈ N be uniquely defined by

s(ε′) · n(t, ε′) < t ≤ s(ε′) ·
[
n(t, ε′) + 1

]
. We conclude that the set{

s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅
}

contains at least 1 ≤ n(t, ε′) ≤
[

t
s(ε′)

]
intervals Ii, so that ti ∈ Ii and Leb(Ii) ≥

2(ε−ε′)
||X||∞

. This proves that

Leb
(
s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅

)
≥

2(ε−ε′)
||X||∞

n(t, ε′) and, consequently,

1
t

Leb
(
s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅

)
≥

1[
n(t, ε′) + 1] · s(ε′)

Leb
(
s ∈ [0 , n(t, ε′)s(ε′)] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅

)
≥

(ε − ε′)
s(ε′)||X||∞

for every t > s(ε′). This completes the proof of (1).

Proof of (2): We now prove that the flow has super-linear lower asymptotic mixing rates on the family B of
balls centered at points with closed orbits. Consider arbitrary ε > 0 and points x1, x2 ∈ M with periodic
orbits. Assume that x2 is not a singularity (the case that x2 is a singularity is simpler). Let π(x2) > 0 denote
the prime period of x2 and, for 0 < ε′ < ε, let s(ε′) := (1 + ε′)K(ε′) be given by the reparametrized gluing
orbit property for ε′. Then, for any t > 0 there exists x1,t ∈ B(x1, ε

′) and 0 ≤ s1 = s1(t) ≤ s(ε′) so that
Xs+s1(x1,t) ∈ B(Xs(x2), ε′) for every s ∈ [0, t]. Thus,

X−s1−k π(x2)(B2) ∩ B1 , ∅ for every 0 ≤ k ≤
[ t
π(x2)

]
.

For every γ > 0, there exists tγ � 1 so that t
π(x2) −

[
t

π(x2)

]
≤ 1 ≤ γt for every t ≥ tγ (just take tγ = [ 1

γ ] + 1).
Then, a similar argument to the one used in the proof of (1) implies that (taking ε′ = ε

2 )

Leb
(
s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅

)
≥

2(ε − ε′)
‖X‖∞

[ t
π(x2)

]
≥

ε

‖X‖∞

( 1
π(x2)

− γ
)
t.

Since γ was taken arbitrary this proves that

lim inf
t→∞

1
t

Leb
({

s ∈ [0, t] : B(x1, ε) ∩ X−s(B(x2, ε)) , ∅
})
≥

ε

π(x2)‖X‖∞
.

Since the right hand side term is linear in ε, this completes the proof of (2).

Proof of (3): Consider arbitrary ε > 0, and let K( ε2 ) be given by the periodic reparametrized gluing orbit
property for ε

2 . For each T ≥ 1, let E ⊂ M be a (T, ε)−maximal separated subset. For each x ∈ E there exists
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y(x) ∈ B(x,T, ε2 ), p(x) ≤ K( ε2 ) and τ ∈ Rep( ε2 ) such that Xτ(T+p(x))(y(x)) = y(x). Since E is a maximal separated
set then E 3 x 7→ y(x) is injective. Thus,

#P
(
(Xt)t, (1 +

ε

2
)(T + K(

ε

2
))
)
≥ #E,

and, consequently,

lim sup
T→∞

1
(1 + ε

2 )(T + K( ε2 ))
log #P((Xt)t, (1 +

ε

2
)(T + K(

ε

2
)))

≥
1

1 + ε
2

lim sup
T→∞

1
T

log #E =
1

1 + ε
2

lim sup
T→∞

1
T

log s(T, ε,M).

This implies that

lim sup
T→∞

1
T

log #P((Xt)t,T ) ≥ lim
ε→0

lim sup
T

1
T

log s(T, ε,M) = htop((Xt)t)

as claimed.

Proof of (4) (i): Let O(p) and O(q) be distinct periodic orbits of period smaller or equal to T . Fix ξ > 0
and let δ0 = δ0(ξ) > 0 be given by Komuro-expansiveness property. We claim that there exists t ∈ R so that
d(Xt(p), Xt(q)) ≥ δ0. Otherwise d(Xt(p), Xt(q)) < δ0 for all t ∈ R and, by Komuro-expansiveness (taking the
reparametrization τ(t) = t), p ∈ Xt0(q) for some t0 ∈ R which is a contradiction. This proves that the set
of periodic orbits P((Xt)t,T ) is a (T, ε)-separated set for every 0 < ε < δ0. In particular, periodic orbits of
period smaller or equal to T are isolated (hence finite). Thus, htop((Xt)t) ≥ lim supT→∞

1
T log #P((Xt)t,T ). This,

together with item (3), implies that

htop((Xt)t) = lim sup
T→∞

1
T

log #P((Xt)t,T ).

Proof of (4) (ii): We claim that every point of M is an entropy point for the flow (Xt)t. Since this is immediate
whenever htop((Xt)t) = 0, assume that

h := htop((Xt)t) = lim
ε→0

lim sup
T→∞

1
T

log s(T, ε,M) > 0.

So, for any small γ > 0 there exists εγ > 0 so that for every 0 < ε < εγ.

lim sup
T→∞

1
T

log s(T, ε,M) ≥ h − γ

and, consequently, there exists a subsequence of real numbers (Tk)k≥1 tending to infinity (depending on both γ
and ε) in such a way that

s(Tk, ε,M) ≥ e(h−2γ)Tk (5.2)
Now, fix x ∈ M arbitrary and let U ⊂ M be any open neighborhood of x. Clearly, htop((Xt)t,U) ≤ h. Thus,

in order to prove that x in an entropy point we are left to prove the other inequality. Fix 0 < ε < εγ so that
B(x, ε) ⊂ U and let (Tk)k≥1 be as above. Let s(ε) = (1 + ε)K(ε) > 0 be given by the reparametrized gluing orbit
property.

The naive strategy to create separated orbits in U is to use the gluing orbit property to build finite orbits
that depart from U and that shadow long pieces of separated orbits and to obtain essentially s(Tk, ε,M) of such
distinct orbits of a fixed size. This idea can be pushed forward in the case of flows with specification because
the time needed for a shadowing process to start can be taken constant and independent of the point. In our
setting we face two difficulties. The first is that the gluing time is bounded above but usually depends on the
orbits involved in the shadowing, and the second one is that since the time of shadowing is not simultaneous
one needs to assume some reasonable large set of shadowing orbits to be separated.

Suppose that (Xt)t is Komuro-expansive and has the periodic reparametrized gluing orbit property. By item
4(i), entropy can be computed using periodic orbits: h = limk→∞

1
Tk

log #P((Xt)t,Tk), for some sequence of
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positive real numbers (Tk)k tending to infinite. We may assume without loss of generality that Tk+1 > 2Tk for
every k ≥ 1. Let t(ε) > 0 be given by uniform continuity in such a way that

max
s∈[0,t(ε)]

dC0(Xs, Id) <
ε

4
(5.3)

and, for every k ≥ 1, consider the decomposition (depending on k)

[0,Tk] =

N(ε,k)−1⋃
j=0

I j

⋃
IN(ε,k) (5.4)

where N(ε, k) =
[ Tk

t(ε)
]

denotes the integer part of Tk
t(ε) , I j = [ jt(ε), ( j + 1)t(ε)[ for 0 ≤ j ≤ N(ε, k)− 1 and the last

interval IN(ε,k) = [Tk − N(ε, k)t(ε),Tk] may be eventually reduced to the empty set. By construction, for every
γ we have #P((Xt)t,Tk) ≥ e(h−2γ)Tk for every k ≥ 1 large.

Fix 0 < ε � δ0 small and k0 ≥ 1 large (depending on ε) so that (1 + ε)(Tk + 2K( ε4 )) < Tk+1 for every k ≥ k0.
The periodic reparametrized gluing orbit property assures that for every periodic point p of period π(p) ≤ Tk

(in other words O(p) ∈ P((Xt)t,Tk)) there exist z = zp ∈ B(x, ε4 ), a reparametrization τp ∈ Rep(ε/4) and gluing
times 0 < sp, s′p ≤ K( ε4 ) so that

d(Xτp(t+sp)(zp), Xt(p)) <
ε

4
for every t ∈ [0, π(p)] and Xτp(π(p)+sp+s′p)(zp) = zp. (5.5)

Such periodic point zp has period π(zp) = τp(π(p) + sp + s′p) ≤ (1 + ε)(Tk + 2K( ε4 )) < Tk+1. Moreover,
the Komuro-expansiveness property assures that if p and q are periodic points then there exists t ∈ R so that
d(Xt(p), Xt(q)) ≥ δ0 (recall item (4)(i)). Recalling the finite decomposition (5.4), the pigeonhole principle
guarantees that there exists 0 ≤ j ≤ N(ε, k + 1) so that

#
{
zp ∈ B(x,

ε

4
) : period of p belongs to I j

}
≥

1
N(ε, k + 1) + 1

e(h−2γ)Tk .

Claim: The set
{
zp ∈ B(x, ε4 ) : period of p belongs to I j

}
is ((1 + ε)(Tk + 2K( ε4 )), δ0 − ε)−separated in U.

Proof of the claim. Let p, q ∈ P((Xt)t,T ) be periodic points and zp, zq ∈ B(x, ε4 ) ⊂ U be constructed as above
(associated to p and q respectively). Suppose that d(Xt(zp), Xt(zq)) < δ0 − ε for all t ∈ [0,T + s( ε4 )]. By
construction, d(Xt(zp), Xt(p)) < ε

4 and d(Xt(zq), Xt(q)) < ε
4 for all t ∈ [s( ε4 ),T + s( ε4 )]. By triangle inequality,

d(Xt(Xs( ε4 ) p), Xt(Xs( ε4 )q)) < δ0 −
ε
2 for all t ∈ [0,T ]. As the periods of zp and p (respectively zq and q) differ in

the maximum t(ε), it follows from the choice of t(ε) in (5.3) that we have d(Xt(p), Xt(q)) < δ0 − ε for all t ∈ R.
It contradicts the Komuro-expansiveness property and proves the claim. �

Thus, htop(Xt,U) ≥ lim supT→∞
1
T log #P((Xt)t,T ) = htop((Xt)t). This completes the proof of item(4.ii) and

finishes the proof of the theorem. �

Remark 5.1. We observe that the conclusion of item 4(ii) holds whenever the periodic reparametrized gluing
orbit property assumption is replaced by gluing orbit property. Given k ≥ 1 large, let Ek = {xi}i=1...r be a
(Tk, ε)-maximal separated set with cardinality greater or equal to e(h−2γ)Tk (cf. equation (5.2)). The gluing orbit
property assures that for every i = 1, . . . , r there exists zi ∈ M and a gluing time 0 < si ≤ K( ε4 ) so that d(zi, x) <
ε
4 and d(Xt+si(zi), Xt(xi)) < ε

4 for every t ∈ [0,Tk]. As in the previous proof, given the decomposition (5.4), the
pigeonhole principle guarantees there exists 0 ≤ j ≤ N(ε) so that #

{
1 ≤ i ≤ r : si ∈ I j

}
≥ 1

N(ε)+1 e(h−2γ)Tk . It is
not hard to check that the set of points (zi)i∈J is (Tk + ( j + 1)t(ε), ε4 )-separated in U, for J = {1 ≤ i ≤ r : si ∈ I j}.
Thus

s(Tk,
ε

2
,U) ≥

1
N(ε) + 1

e(h−2γ)Tk (5.6)

and, consequently, htop((Xt)t,U) ≥ h − 2γ. Since γ > 0 is arbitrary, this argument is enough to guarantee that x
is an entropy point in this context.
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Remark 5.2. There are several ways to estimate the largest lower bound of the largest escaping time of a point
from its ball of a definite radius which may be of independent interest. For instance, in the case of Lipschitz
vector fields we can provide estimates where the Lipschitz constant appear naturally. Indeed, instead of (5.1),
one could use

‖Xt(y) − x‖ ≤ ‖Xt(x) − x‖ + ‖Xt(y) − Xt(x)‖.

In the right hand side, the first term ‖Xt(x) − x‖ is then bounded above by ‖X‖∞|t|, while the second term is
bounded by eL|t|‖x−y‖ as a consequence of Grownall’s inequality. Thus, estimating each of these terms directly
and considering the escape time

τ(ε) := sup
x∈M

inf{t > 0 : ‖Xt(x) − x‖ > ε} (5.7)

one can easily check that if ‖x − y‖ ≤ ε′ then ‖Xt(y) − x‖ ≤ ε for every

|t| ≤ max
{

sup
ε′<ε̃<ε

{
ε̃

‖X‖∞
+

1
L

log
ε − ε̃

ε′
}, sup

ε′<ε̃<ε
{τ(ε̃) +

1
L

log
ε − ε̃

ε′
}
}

where L > 0 is a Lipschitz constant for the vector field X that generates (Xt)t.

6. The space of invariant measures for flows

The strategy for the proof of Theorem B relies on the extension of the concepts of closeability and linkability
introduced in [12] for continuous flows. It is not hard to check that flows with the gluing orbit property are
linkable and closable with respect to all periodic orbits. However, an extension of these results for flows where
the shadowing is given in terms of reparametrizations is of wider applications and demands a careful analysis.

We need some preliminary definitions. Let (Xt)t be a continuous flow on the compact and connected metric
space (M, d). Given x ∈ M, ε > 0, a reparametrization τ ∈ Rep(ε) and an initial time T0 ∈ R

+, we define the
reparametrized dynamical ball of lengh T − T0, with initial time T0 and size ε centered at x, by

B(x,T,T0, ε, τ) = {y ∈ M : d(Xτ(s)(y), Xs(x)) < ε, ∀T0 ≤ s ≤ T }.

The next lemma, which resembles [28, Lemma 3], guarantees that the empirical measures associated to points
that remain in reparametrized dynamical balls remain close. The difficulties here are that the two pieces of
orbits are close but each of these in a suitable velocity. Since the information is required to hold at small scales
we assume ε0 = 1

2 and 0 < ε < ε0.

Lemma 6.1. Let (Xt)t be a continuous flow on M, x ∈ M, 0 < ε ≤ ε0, τ ∈ Rep(ε) be a reparametrization
and let p, q ∈ R+ be such that τ(p) ≤ τ(q) ≤ (1 + ε)τ(p). Then, for every y ∈ B(x, p, 0, ε, τ) we have that
ρ(m(y, q, 0, τ),m(x, p)) ≤ 6ε.

Proof. Take any Borel set A ⊂ M. For every y ∈ B(x, p, 0, ε, τ) we have

m(y, q, 0, τ)(A) =
1
τ(q)

∫ τ(q)

0
δXs(y)(A) ds

≤
1
τ(p)

∫ τ(p)

0
δXs(y)(A) ds +

1
τ(p)

∫ τ(q)

τ(p)
δXs(y)(A) ds

≤
1
p

∫ p

0
δXs(x)(Aε) ds + 5ε +

1
τ(p)

∫ τ(q)

τ(p)
δXs(y)(A) ds. (6.1)

Here we used that Xτ(s)(y) ∈ A implies Xs(x) ∈ Aε, for all 0 ≤ s ≤ p, and that the reparametrization τ is
increasing, hence Lebesgue almost everywhere differentiable. Indeed, since τ ∈ Rep(ε), Rademacher’s theorem
guarantees that the derivative τ′ to lie in the interval [1 − ε, 1 + ε]. Therefore

1
τ(p)

∫ τ(p)

0
δXs(y)(A) ds =

1
τ(p)

∫ p

0
τ′(s) δXτ(s)(y)(A) ds.
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Then, this is enough to deduce the estimate∣∣∣∣ 1
τ(p)

∫ p

0
τ′(s) δXτ(s)(y)(A) ds −

1
p

∫ p

0
δXs(x)(Aε) ds

∣∣∣∣
≤

∣∣∣∣ 1
τ(p)

−
1
p

∣∣∣∣ ∣∣∣∣∫ p

0
τ′(s) δXτ(s)(y)(A) ds

∣∣∣∣
+

∣∣∣∣1p
∫ p

0
τ′(s) δXτ(s)(y)(A) ds −

1
p

∫ p

0
δXs(x)(Aε) ds

∣∣∣∣
≤ (1 + ε)

|τ(p) − p|
τ(p)

+ 2ε

≤
(1 + ε

1 − ε
+ 2

)
ε ≤ 5ε.

In order to prove the lemma, now observe that the third term in the right-hand side of (6.1) can be bounded
above as follows

1
τ(p)

∫ τ(q)

τ(p)
δXs(y)(A) ds ≤

τ(q) − τ(p)
τ(p)

≤ ε.

Altogether, we conclude that m(y, q, 0, τ)(A) ≤ m(x, p)(Aε) + 6ε. Hence, ρ(m(y, q, 0, τ),m(x, p)) ≤ 6ε, which
proves the lemma. �

The following notions are adapted from similar concepts in [12].

Definition 6.1. A point x ∈ M is closeable if for every ε > 0 and T > 0 there exist positive real numbers p =

p(x, ε,T ) and q = q(x, ε,T ) and a reparametrization τ ∈ Rep(ε) such that there is a point y ∈ B(x, p, 0, ε, τ) ∩
Per((Xt)t) satisfying Xτ(q)(y) = y and T ≤ τ(p) ≤ τ(q) ≤ (1 + ε)τ(p).

Definition 6.2. The set Per((Xt)t) is linkable if for every x0, x1 ∈ Per((Xt)t), ε > 0 and λ ∈ [0, 1] there exist a
reparametrization τ ∈ Rep(ε), times t0, t1, q0, q1 ∈ R

+ and y ∈ Per((Xt)t) satisfying the following conditions:
(1) Xτ(q1)(y) = y and y ∈ B(x0, t0, 0, ε, τ) ∩ B(x1, q0 + t1, q0, ε, τ);
(2) τ(t0) ≤ τ(q0) ≤ (1 + ε)τ(t0);
(3) τ(q0 + t1) − τ(q0) ≤ τ(q1) − τ(q0) ≤ (1 + ε)[τ(q0 + t1) − τ(q0)];

(4) λ − ε ≤ τ(t0)
τ(t0)+τ(q0+t1)−τ(q0) ≤ λ + ε.

The previous notion means, roughly, that any convex combination of Dirac masses on closed orbits can be
approximated by an empirical measure over a suitable closed orbit. The following stronger notion requires such
convex combinations to be given after a fixed amount of time.

Definition 6.3. The set Per((Xt)t) is strongly linkable provided that for every x0, x1 ∈ Per((Xt)t) and every ε > 0
there exists T = T (x0, x1, ε) such that if t0, t1 > 0 satisfy Xti(xi) = xi for i = 0, 1, τ(t0) ≥ T and t1 ≥ T

1−ε , then
there are a periodic point y ∈ Per((Xt)t), a reparametrization τ ∈ Rep(ε) and real numbers 0 < q0 ≤ q1 such that
Xτ(q1)(y) = y and

(1) τ(t0) ≤ τ(q0) ≤ (1 + ε)τ(t0) and y ∈ B(x0, t0, 0, ε, τ)
(2) τ(q0 + t1) − τ(q0) ≤ τ(q1) − τ(q0) ≤ (1 + ε)[τ(q0 + t1) − τ(q0)] and y ∈ B(x1, q0 + t1, q0, ε, τ).

Remark 6.4. The later condition is stronger than the one of Definition 6.2. Indeed, for any δ > 0 and τ̃ ∈ Rep(δ)

1 − δ
1 + δ

t0
t0 + t1

≤
τ̃(t0)

τ̃(t0) + τ̃(q0 + t1) − τ̃(q0)
≤

1 + δ

1 − δ
t0

t0 + t1
.

Given ε > 0 and λ ∈ (0, 1), if δ > 0 satisfies 1+δ
1−δ < 2 then

λ −
ε

2
≤

1 − δ
1 + δ

λ ≤ λ ≤
1 + δ

1 − δ
λ ≤ λ +

ε

2
.
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Thus, in order to prove that an estimate as in Definition 6.2(4) it is enough to prove that one can choose t0, t1
large so that Xti(xi) = xi for i = 0, 1 and

λ −
ε

4
≤

t0
t0 + t1

≤ λ +
ε

4
,

which is simple to check.

As an immediate consequence of the previous lemma we deduce that empirical measures of closeable points
are approximated by invariant measures over the approximating closed orbits.

Corollary 6.1. Let x ∈ M be closeable. Given T ∈ R+ and ε > 0 there exist y ∈ M, τ ∈ Rep(ε) and p, q ∈ R+

so that Xτ(q)(y) = y, that T ≤ τ(p) ≤ τ(q) ≤ (1 + ε)τ(p) and ρ(γ(y)),m(x, p)) < 6ε, where γ(y) = m(y, q, 0, τ).

In what follows we shall prove that the reparametrized gluing orbit property implies both the closeability
and linkability properties.

Proposition 6.1. If a continuous flow (Xt)t on M satisfies the periodic reparametrized gluing orbit property
then:

(1) every point is closeable;
(2) Per((Xt)t) is strongly linkable.

Proof. Fix x ∈ M arbitrary. Take any T ∈ R+ and ε > 0, and let K(ε) > 0 be provided by the reparametrized
gluing orbit property. Let t0 ∈ R+ (depending on ε and T ) be such that, for all τ̃ ∈ Rep(ε),

(i) τ̃(t0) ≥ T ,
(ii) (1 + ε) K(ε) ≤ ε τ̃(t0).

Given x0 = x and t0 as above, by the reparametrized gluing orbit property there exists a time q := t0 + p0,
where p0 ≤ K(ε), a reparametrization τ ∈ Rep(ε) and a periodic point y ∈ M such that y ∈ B(x, t0, 0, ε, τ) and
Xτ(q)(y) = y. In order to prove that x is closeable it is enough to estimate the proportion of time spent during
the shadowing as follows

T ≤ τ(t0) < τ(t0 + p0) ≤ τ(t0) + (1 + ε)p0 ≤ τ(t0) + (1 + ε)K(ε) ≤ (1 + ε)τ(t0),

thus completing the proof of item (1) in the proposition.
It remains to prove that the set Per((Xt)t) is strongly linkable. Let x0, x1 ∈ Per((Xt)t). Given ε > 0 let

K = K(ε) be given by the reparametrized gluing orbit property and let T = T (ε) ∈ R+ be defined by T (ε) :=
(1+ε)K(ε)

ε . Take any t0, t1 ∈ R+ periods of x0 and x1, respectively, in such a way that
(1) τ̃(t0) ≥ T (ε);
(2) t1 ≥

T (ε)
1−ε =

(1+ε)K(ε)
ε(1−ε) ;

(3) Xt j(x j) = x j for j = 0, 1,
for all τ̃ ∈ Rep(ε). By the reparametrized gluing orbit property, there exists τ ∈ Rep(ε), p0, p1 ≤ K(ε) and a
periodic point y ∈ M such that y ∈ B(x0, t0, 0, ε, τ)∩ B(x1, q0 + t1, q0, ε, τ) and Xτ(q1)(y) = y, where q0 := t0 + p0
and q1 := t0 + p0 + t1 + p1. Moreover, by the choice of t0, t1 > 0, we conclude

T ≤ τ(t0) < τ(t0 + p0) ≤ τ(t0) + (1 + ε)p0 ≤ τ(t0) + (1 + ε)K(ε)
≤ τ(t0) + εT (ε) ≤ τ(t0) + ε τ(t0) = (1 + ε)τ(t0)

and, similarly,

τ(t0 + p0 + t1) − τ(t0 + p0) ≤ τ(t0 + p0 + t1 + p1) − τ(t0 + p0)
= τ(t0 + p0 + t1 + p1) − τ(t0 + p0 + t1) + τ(t0 + p0 + t1) − τ(t0 + p0)
≤ (1 + ε)K(ε) + τ(t0 + p0 + t1) − τ(t0 + p0)
≤ ε(1 − ε)t1 + τ(t0 + p0 + t1) − τ(t0 + p0)
≤ (1 + ε)[τ(p0 + t0 + t1) − τ(t0 + p0)].

This proves (2) and completes the proof of the proposition. �
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In what follows, given a locally convex space X and A ⊂ X, define

conv(A) :=
∞⋃

n=1


n∑

j=1

λ j µ j : λ j ∈ [0, 1],
n∑

j=1

λ j = 1, µ j ∈ A


(resp. conv(A)) the smallest convex set (resp. the smallest closed convex set) containing A and let A denote the
closure of A.

Theorem 6.5. Let (Xt)t be a continuous flow on M. If every point is closeable then the setMco
1 ((Xt)t) is dense

inMe
1((Xt)t). Moreover, if Per((Xt)t) is linkable thenMco

1 ((Xt)t) = conv(Mco
1 ((Xt)t)).

Proof. Let (Xt)t be a continuous flow on a compact and connected metric space M. Assume first that every
point of M is closeable and take µ ∈ Me

1((Xt)t) and ε > 0 arbitrary small. Let x ∈ M be a generic point
for µ and let T > 0 be such that ρ(µ,m(x, t)) < ε/7 for every t ≥ T . Since every point is closeable, taking
p = T and ε/7, there exist τ ∈ Rep(ε/7), p, q ∈ R+ with T ≤ τ(p) ≤ τ(q) ≤ (1 + ε/7)τ(p) and a periodic
point y ∈ B(x, p, 0, ε/7, τ) such that Xτ(q)(y) = y. Corollary 6.1 implies that ρ(m(y, q, 0, τ),m(x, p)) ≤ 6ε/7 and,
consequently,

ρ(γ(y), µ) = ρ(m(y, q, 0, τ), µ) ≤ ρ(m(y, q, 0, τ),m(x, p)) + ρ(m(x, p), µ) ≤ ε.

Since ε > 0 was chosen arbitrary this proves that µ is accumulated by invariant probability measures on closed
orbits. This proves thatMco

1 ((Xt)t) is dense inMe
1((Xt)t) and finishes the proof of the first part of the theorem.

Now, assume that Per((Xt)t) is linkable. We will use the following lemma (see [12, Lemma 5.14]).

Lemma 6.2. Let L ⊂ K ⊂ M1(M). If L is dense in {λ µ1 + (1 − λ) µ2 : λ ∈ [0, 1], µ1, µ2 ∈ K} then L is dense
in the convex combination conv(K) of measures in K. Hence L = (conv(K)) = conv(K).

By the later, in order to deduce thatMco
1 ((Xt)t) = conv(Mco

1 ((Xt)t)) it is enough to prove that for any periodic
measures γ(x0), γ(x1) ∈ Mco

1 ((Xt)t) supported on orbits of x0, x1 ∈ Per((Xt)t), respectively, λ ∈ [0, 1] and ε > 0
there exists y ∈ M such that Xτ(q1)(y) = y and

ρ(m(y, q1, 0, τ), λ γ(x0) + (1 − λ) γ(x1)) ≤ 8ε. (6.2)

Fix ε > 0, λ ∈ [0, 1] and x0, x1 ∈ Per((Xt)t). Assume, without loss of generality, that 0 < ε < 1
2 is small. Since

Per((Xt)t) is linkable there exist a reparametrization τ ∈ Rep(ε), times t0, t1, q0, q1 ∈ R
+ and y ∈ Per((Xt)t)

satisfying:
(1) Xti(xi) = xi for i = 0, 1
(2) Xτ(q1)(y) = y and y ∈ B(x0, t0, 0, ε, τ) ∩ B(x1, q0 + t1, q0, ε, τ);
(3) τ(t0) ≤ τ(q0) ≤ (1 + ε) τ(t0);
(4) τ(q0 + t1) − τ(q0) ≤ τ(q1) − τ(q0) ≤ (1 + ε)[τ(q0 + t1) − τ(q0)];

(5) λ − ε ≤ τ(t0)
τ(t0)+τ(q0+t1)−τ(q0) ≤ λ + ε.

We claim that the periodic measure γ(y) satisfies (6.2). First observe that

ρ(m(y, q0, 0, τ), γ(x0)) < 6ε

as a direct consequence of Lemma 6.1 (taking p = t0 and q = q0). We also need the following estimate.

Claim: ρ(m(y, q1, q0, τ)), γ(x1)) ≤ 6ε.

Proof of the claim. The computations are similar to the ones in the proof of Lemma 6.1 using the estimates
given by the linkability property. Indeed, using Rademacher’s theorem we have

1
τ(q0 + t1) − τ(q0)

∫ τ(q0+t1)

τ(q0)
δXs(y) ds =

1
τ(q0 + t1) − τ(q0)

∫ q0+t1

q0

τ′(s) δXτ(s)(y) ds
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and so it is not hard to check that∣∣∣∣m(y, q1, q0, τ)(A) −
1
t1

∫ t1

0
δXs(x)(Aε) ds

∣∣∣∣ =
∣∣∣∣ 1
τ(q1) − τ(q0)

∫ τ(q1)

τ(q0)
δXs(y)(A) ds −

1
t1

∫ t1

0
δXs(x)(Aε) ds

∣∣∣∣
≤

∣∣∣∣ 1
τ(q0 + t1) − τ(q0)

∫ q0+t1

q0

τ′(s) δXτ(s)(y)(A) ds −
1
t1

∫ t1

0
δXs(x)(Aε) ds

∣∣∣∣
+

∣∣∣∣ 1
τ(q0 + t1) − τ(q0)

∫ τ(q1)

τ(q0+t1)
δXs(y)(A) ds

∣∣∣∣
and, consequently,∣∣∣∣m(y, q1, q0, τ)(A) −

1
t1

∫ t1

0
δXs(x)(Aε) ds

∣∣∣∣ ≤ ∣∣∣∣ 1
τ(q0 + t1) − τ(q0)

−
1
t1

∣∣∣∣ ∣∣∣∣ ∫ q0+t1

q0

τ′(s) δXτ(s)(y)(A) ds
∣∣∣∣

+
∣∣∣∣ 1
t1

∫ q0+t1

q0

τ′(s) δXτ(s)(y)(A) ds −
1
t1

∫ t1

0
δXs(x)(Aε) ds

∣∣∣∣
+

∣∣∣∣ 1
τ(q0 + t1) − τ(q0)

∫ τ(q1)

τ(q0+t1)
δXs(y)(A) ds

∣∣∣∣
≤ (1 + ε)

|τ(q0 + t1) − τ(q0) − t1|
|τ(q0 + t1) − τ(q0)|

+ 2ε + ε

≤
1 + ε

1 − ε
ε + 2ε + ε

≤
(1 + ε

1 − ε
+ 3

)
ε ≤ 6ε.

This proves the claim. �

We are now in a position to prove (6.2). Observe that

τ(q0)
τ(q1)

m(y, q0, 0, τ) =
1

τ(q1)

∫ τ(q0)

0
δXs(y) ds

and
τ(q1) − τ(q0)

τ(q1)
m(y, q1, q0, τ) =

1
τ(q1)

∫ τ(q1)

τ(q0)
δXs(y) ds .

Thus, writting

m(y, q1, 0, τ) =
1

τ(q1)

∫ τ(q1)

0
δXs(y) ds =

1
τ(q1)

∫ τ(q0)

0
δXs(y) ds +

1
τ(q1)

∫ τ(q1)

τ(q0)
δXs(y) ds,

we can conclude (using [12, Lemma 2.1(iii)])

ρ

(
m(y, q1, 0, τ),

τ(q0)
τ(q1)

γ(x0) +
τ(q1) − τ(q0)

τ(q1)
γ(x1)

)
≤ 6ε.

Using properties (3) and (4) above, we also have
τ(t0)

(1 + ε)(τ(t0) + τ(q0 + t1) − τ(q0))
≤
τ(q0)
τ(q1)

≤
(1 + ε)τ(t0)

τ(t0) + τ(q0 + t1) − τ(q0)
,

and thus ∣∣∣∣∣τ(q0)
τ(q1)

−
τ(t0)

τ(t0) + τ(q0 + t1) − τ(q0)

∣∣∣∣∣ ≤ ε.

By triangular inequality we obtain

ρ

(
m(y, q1, 0, τ),

τ(t0)
τ(t0) + τ(q0 + t1) − τ(q0)

γ(x0) +
τ(q0 + t1) − τ(q0)

τ(t0) + τ(q0 + t1) − τ(q0)
γ(x1)

)
≤ 7ε.
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Now observe that property (5) can be rewritten as∣∣∣∣∣ τ(t0)
τ(t0) + τ(q0 + t1) − τ(q0)

− λ

∣∣∣∣∣ ≤ ε.
This implies that

ρ(m(y, q1, 0, τ), λ γ(x0) + (1 − λ) γ(x1)) ≤ 8ε.
Since ε > 0 was taken arbitrary this proves that γ(y) is close to the convex combination λ γ(x0) + (1 − λ) γ(x1)
and finishes the proof of the lemma. �

Proof of Theorem B. As an immediate consequence of Theorem 6.5 we obtain that periodic measures are dense
in M1((Xt)t). Since the set of extreme points of M1((Xt)t) is always a Gδ set, the set of ergodic measures is
residual inM1((Xt)t). �

Proof of Corollary 1. By Theorem 4.8, the denseness of periodic orbits together with the periodic shadowing
property guarantee the flow (Xt)t to satisfy the periodic reparametrized gluing orbit property. Then Theorem B
implies that periodic measures are dense in the space of invariant measures.

The converse is simpler. Assume that periodic measures are dense inM1((Xt)t), and let Λ denote the union
of the supports of the ergodic measures. Given any x ∈ Λ let µ be an ergodic measure so that x ∈ supp(µ). Let
U be an arbitrary open neighborhood of x for which, in particular, µ(U) > 0. By assumption, there exists a
sequence of points (pn)n with closed orbits in such a way that γ(pn)→ µ in the weak∗ topology. In consequence,
lim supn→∞ γ(pn)(U) ≥ µ(U) > 0. This implies that there are points with closed orbit in the set U. Since U was
taken arbitrary one concludes that x is accumulated by periodic points, finishing the proof of the corollary. �

7. Coboundaries, irregular sets and periodic orbits

This section is devoted to the proof of Corollary 2.

Proof of Corollary 2. We prove the implications separately.

(1) ⇒ (2): It is a simple consequence of the fact that the periodic measures are dense in the set of all invariant
measures (cf. Theorem B).

(2)⇒ (1): Immediate.

(3) ⇒ (1): If the Birkhoff averages at x do not converge then the sequence of empirical probability measures
( 1

t

∫ t
0 δXs(x)ds)t≥0 have necessarily two accumulation points that are invariant probability measures µ1 , µ2 and∫

φ dµ1 <
∫
φ dµ2.

(1)⇒ (3): Let µ1 , µ2 be two (Xt)t-invariant and ergodic probability measures so that
∫
φ dµ1 <

∫
φ dµ2. Take

0 < ε < 1
4 (

∫
φ dµ2−

∫
φ dµ1). For any s = 1, 2 pick zs ∈ M in the ergodic basin of attraction of µs. For any i ≥ 1

take xi := zi( mod 1). The strategy of the proof is to construct a point for which the Birkhoff averages oscillate
between the values

∫
φ dµ1 and

∫
φ dµ2. To do so, let δ > 0 be so that |φ(x) − φ(y)| ≤ ε

2 whenever d(x, y) ≤ δ
(obtained by uniform continuity of the observable φ), and let K(δ) > 0 be given by the reparametrized gluing
orbit property. Consider the sequence of positive times (Tk)k so that Tk � Tk−1 for every k ≥ 1 (the choice of
such sequence will be clear in the construction). For any k ≥ 1 there are zk ∈ M, times 0 < s0, . . . , sk−1 ≤ K(δ)
and a reparametrization τ ∈ Rep(δ) so that

d( Xτ(t)(zk), Xt(xi) ) < δ for every
∑

0≤ j<i

(T j + s j) ≤ t ≤ Ti +
∑

0≤ j<i

(T j + s j) (7.1)

and every 1 ≤ i ≤ k. If Li :=
∑

0≤ j<i(T j + s j), the previous expression implies that∣∣∣∣ 1
t − Li

∫ t

Li

φ(Xτ(s)(zk)) ds −
1

t − Li

∫ t

Li

φ(Xs(xi)) ds
∣∣∣∣

≤
1

t − Li

∫ t

Li

∣∣∣∣φ(Xτ(s)(zk)) − φ(Xs(xi))
∣∣∣∣ ds ≤

ε

2
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for every 1 ≤ i ≤ k and Li ≤ t ≤ Ti + Li. Therefore, by the choice of (Tk)k,∣∣∣∣ ∫ Li+Ti

0
φ(Xτ(s)(zk)) ds −

∫ Li+Ti

0
φ(Xs(xi)) ds

∣∣∣∣
≤

∣∣∣∣ ∫ Li

0
φ(Xτ(s)(zk)) ds −

∫ Li

0
φ(Xs(xi)) ds

∣∣∣∣
+

∣∣∣∣ ∫ Li+Ti

Li

φ(Xτ(s)(zk)) ds −
∫ Li+Ti

Li

φ(Xs(xi)) ds
∣∣∣∣

≤ 2Li‖φ‖∞ +

∫ Li+Ti

Li

∣∣∣∣φ(Xτ(s)(zk)) − φ(Xs(x1))
∣∣∣∣ ds

and so
1

Li + Ti

∣∣∣∣ ∫ Li+Ti

0
φ(Xτ(s)(zk)) ds −

∫ Li+Ti

0
φ(Xs(xi)) ds

∣∣∣∣ ≤ 2Li

Li + Ti
‖φ‖∞ +

Ti

Li + Ti

ε

2
< ε (7.2)

(here we used that one can take Li � Ti simply by Ti+1 � Ti). This is sufficient to get that

1
Li + Ti

∫ Li+Ti

0
φ(Xτ(s)(zk)) ds <

∫
φ dµ1 +

3
2
ε <

∫
φ dµ2 −

3
2
ε

≤
1

L j + T j

∫ L j+T j

0
φ(Xτ(s)(zk)) ds (7.3)

for all (large) i odd and j even in the interval [1, k]. Now, observe that the estimates (7.1) to (7.3) hold for all
points zk ∈ M independently from the reparametrizations τ̃ ∈ Rep(δ) considered. Since the sequence (zk)k lies
on the compact set B(x1, δ) accumulation points exist and the Birkhoff averages for φ on any of these points do
not converge. This completes the proof of Corollary 2.
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