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Abstract. In this paper we contribute to the generic theory of Hamiltonians by proving
that there is a C2-residual R in the set of C2 Hamiltonians on a closed symplectic manifold
M, such that, for any H ∈ R, there is a full measure subset of energies e in H(M) such
that the Hamiltonian level (H, e) is topologically mixing; moreover these level sets are
homoclinic classes.
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1. Introduction

1.1. Hamiltonians, transitivity and mixing. The Hamiltonian systems form a funda-
mental subclass of all dynamical systems generated by differential equations. Their impor-
tance follows from the vast range of applications throughout different branches of science.
In fact, laws of physics are mostly expressed in terms of differential equations, and a well
understand and successful subclass of these differential equations, which leave invariant a
symplectic structure, are the Hamiltonian equations (see [3]).

Generic properties of such continuous-time systems, i.e. properties which hold on
Baire’s second category (or non meagre) sets, are thus of great importance and interest
since they give us the typical behavior in an appropriate sense that one could expect from
the class of models at hand (cf. [11, 14, 8, 9]). There are, of course, considerable lim-
itations to the amount of information we can extract from a specific system by looking
at generic cases. Nevertheless, it is of great utility to learn that a selected model can be
slightly perturbed in order to obtain dynamics we understand in a reasonable way.

The topological transitivity is a global property of a dynamical system. As a motivation
for this notion, we may think of a real physical system, where a state is never measured
exactly. Thus, instead of points, we should study small open subsets of the phase space and
describe how they move in that space. If each one of these open subsets meet each other
by the action of the system after some time, then we say that the system is topologically
transitive. Equivalently, if we take a compact phase space, we may say that the system
has a dense orbit. However, if the open subsets remain inseparable after some time, by the
iteration of the system, then we say that the system is topologically mixing. Obviously,
a topologically mixing system is also a topologically transitive system. There exist a lot
of transitive systems, as the irrational rotations of S1, the shift maps and the basic sets
(see [15]). It is also well-known that C1+α-Anosov flows (α > 0) are ergodic and so
transitive. Nevertheless, transitivity is not an open property.

Question 1. Can the transitivity property be generic?
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Some authors have been working on this question. The first remarkable result on this
subject is due to Bonatti and Crovisier, in [10]. They show that, C1-generically, a C1-
conservative diffeomorphism is transitive. Later, jointly with Arnaud, Bonatti and Cro-
visier extend this result for C1-symplectic diffeomorphisms (see [5]). Adapting the tech-
niques used to prove these results to the continuous-time case, one of the authors proved an
analogous result for C1-divergence-free vector fields. In fact, by a result due to Abdenur et
al. (see [1]), the first author was able to show that, C1-generically, a divergence-free vector
field is topologically mixing (see [6]). Recently, the results in [10, 5] got an upgrading
in [2]. In the direction against the abundance of transitivity (ergodicity), but with a much
more exigent smoothness hypothesis, Markus and Meyer proved that generic Hamiltonians
are neither integrable nor ergodic on regular energy levels ([11]).

In a first approach and since Hamiltonians (see §1.2 for details) are always equipped
with the Hamiltonian function H : M → R, the energy {e} and the energy levels H−1({e}),
it is not clear what could be the statement of the version of [2, 5, 6] for Hamiltonians: Can
we expect generic Hamiltonians and any energy? Or generic Hamiltonians and generic
energy? Or else any other statement? So, the first difficulty is conceptual, namely how to
obtain a properly formulation of the result.

One of the main results of the present paper (Theorem 3) is a generalization of [10, 5] for
Hamiltonians and states that “most” Hamiltonians have “most” energy levels indecompos-
able in the sense that we cannot split the energy level or, in other words, there is some orbit
that winds around the whole energy level. Here “most” Hamiltonians means C2-Baire’s
second category and “most” energy levels means full Lebesgue measure set. This theorem
contrasts with well-established results for thinner topologies; indeed, KAM theorem (see
[16]) makes impossible to obtain the same result due to the persistence of invariant tori with
positive measure. Furthermore, we prove that for C2-generic Hamiltonians each connected
component of the energy level is a homoclinic class (Theorem 4) and it is topologically
mixing (Theorem 5). An ingredient of the proof of previous results is a connecting lemma
for pseudo-orbits for Hamiltonians which is of independent interest and whose sketch of
the proof is given in the appendix.

1.2. Basic definitions and statement of the results. To state precisely the main results
we introduce some definitions. Let (M2d, ω) be a symplectic manifold, where M = M2d

(d ≥ 2) is a closed, connected and smooth Riemannian manifold, endowed with a sym-
plectic form ω. Denote by C s(M,R) the set of C s-real-valued functions on M and call
H ∈ C s(M,R) a C s-Hamiltonian, for s ≥ 2. From now on, we set s = 2. Given a Hamil-
tonian H, we can define the Hamiltonian vector field XH by:

(1) ω(XH(p), u) = ∇pH(u), ∀u ∈ TpM,

which generates the Hamiltonian flow Xt
H . Observe that H is C2 if and only if XH is C1

and that, since H is smooth and M is closed, Sing(XH) , ∅, where Sing(XH) stands for the
singularities of XH or, in other words, the critical points of H. We denote by Per(H) the set
of closed orbits for Xt

H , OH(x) the Xt
H-orbit of x and O+

H(x) the forward Xt
H-orbit of x. We

say that H̃ is ε-C2-close to H, for ε > 0 fixed, if ‖H − H̃‖C2 < ε, where ‖H − H̃‖C2 denotes
the C2-distance between H and H̃.

A scalar e ∈ H(M) ⊂ R is called an energy of H. An energy hypersurface EH,e is a
connected component of H−1({e}), called energy level set. The energy level set H−1({e}) is
said to be regular if any energy hypersurface of H−1({e}) is regular, i.e, does not contain
any singularity. In this case, we can also say that the energy e is regular. Observe that a
regular energy hypersurface is a Xt

H-invariant, compact and (2d−1)-dimensional manifold.
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Consider a Hamiltonian H ∈ C2(M,R), an energy e ∈ H(M) and a regular energy
hypersurface EH,e. The triplet (H, e,EH,e) is called a Hamiltonian system and the pair
(H, e) is called a Hamiltonian level. If (H, e) is regular then H−1({e}) corresponds to the
union of a finite number of closed connected components, that is, H−1({e}) = t

Ie
i=1EH,e,i,

for Ie ∈ N. Fixing a small neighborhoodW of a regular energy hypersurface EH,e, there
exist a small neighborhood U of the Hamiltonian H and ε > 0 such that, for any H̃ ∈ U
and for any ẽ ∈ (e− ε, e + ε), we have H̃−1({ẽ})∩W = EH̃,ẽ. The energy hypersurface EH̃,ẽ
is called the analytic continuation of EH,e.

Let XH be a Hamiltonian vector field, x a regular point in M and e = H(x). Define
Nx := Nx ∩ TxH−1({e}), where TxH−1({e}) = Ker ∇H(x) is the tangent space to the energy
level set. Thus,Nx is a (dim(M)− 2)-dimensional bundle. The transversal linear Poincaré
flow associated to H is given by Φt

H(x) : Nx → NXt
H (x) where Φt

H(x) · v = ΠXt
H (x) ◦DXH

t
x(v),

where ΠXt
H (x) : TXt

H (x)M → NXt
H (x) denotes the canonical orthogonal projection. Observe

that Nx is Φt
H(x)-invariant. Now, Nx can be seen as the quotient space TxEH,e/〈XH〉, and

consider the symplectic form ω̃EH,e : Nx × Nx → R defined by ω̃EH,e ([u], [v]) = ω(u, v) for
any u, v ∈ TxEH,e. Note that this form is well defined since ω̃EH,e ([XH], [v]) = ω(XH , v) =

∇H(v) = 0, for any v ∈ TxEH,e. It is well-known (see e.g. [3]) that, given a regular point
p ∈ EH,e, Φt

H(p) is a linear symplectomorphism for ω̃EH,e . Given a closed orbit p of period
` > 0 of a Hamiltonian H, the transversal linear Poincaré flow Φ`

H(p), is the derivative
of the standard Poincaré map. We say that p is a hyperbolic point if the eigenvalues of
Φ`

H(p) do not intersect the unit circle and we say that p is an elliptic point if some of the
eigenvalues of Φ`

H(p) are non-real and of norm equal to one and the remaining ones (if
any) have norm different from one. Finally, we say that p is a totally elliptic point if all the
eigenvalues of Φ`

H(p) are non-real and of norm equal to one.
Given a hyperbolic closed orbit of a Hamiltonian H, with period `, and p ∈ γ. We define

the stable and unstable manifolds of γ by W s,u
H (γ) =

⋃
0≤t≤` Xt

H(W s,u
H (p)). The homoclinic

class of γ is defined by Hγ,H = W s
H(γ) t Wu

H(γ), where A stands for the closure of the set
A and t denotes the transversal intersection of manifolds.

It is well-known that a non-empty homoclinic class is invariant by the flow, has a dense
orbit, contains a dense set of closed orbits and is transitive. Moreover, the hyperbolic
closed orbits are dense in the homoclinic class. If all energy hypersurface of H−1({e}) are
homoclinic classes, we say that H−1({e}) is a homoclinic class.

Definition 1.1. A compact energy hypersurface EH,e is transitive (respectively topologi-
cally mixing) if, for any open and non-empty subsets of EH,e, say U and V, there is τ ∈ R
such that Xτ

H(U) ∩ V , ∅ (respectively Xt
H(U) ∩ V , ∅ for any t ≥ τ). A regular Hamilton-

ian level (H, e) is transitive (respectively topologically mixing) if each one of the energy
hypersurfaces of H−1({e}) is transitive (respectively topologically mixing).

The following result is an immediate consequence of the fact that the Morse functions
are C2-open and dense among C2(M,R) and Sard’s theorem.

Lemma 1.1. There is a C2-open and dense subset O in C2(M,R) such that, for any H ∈ O
there exists an open and dense set, full Lebesgue measure subset S(H) ⊂ H(M) of energies
such that any energy e ∈ S(H) the Hamiltonian level (H, e) is regular.

Accordingly with this definition, we now can state the our first result.

Theorem 1. There is a residual set R in C2(M,R) such that, for any H0 ∈ R and energy e
in a compact subset I ⊂ S(H0) there is a C2 neighborhoodV of H0 (depending also on I)
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and a residual subset RH0 ofV such that for any H ∈ RH0 and e ∈ I the Hamiltonian level
(H, e) is transitive.

The quasi-ergodic hypothesis states the existence of a dense orbit in the connected com-
ponent of the energy levels of a given Hamiltonian. In [16, §4.4 and §4.5] Yoccoz gives
examples, in the C∞ setting, of Hamiltonians in certain symplectic manifolds which do not
satisfy the quasi-ergodic hypothesis. In the opposite direction, Theorem 1 establishes the
truthness of the quasi-ergodic hypothesis under C2-generic assumptions.

Theorem 2. There is a residual set R̃ in C2(M,R) and a residual subset E ⊂ R such that
for any H ∈ R̃ and any energy e ∈ E, the energy level EH,e is either empty or it is transitive.

In view of the previous theorem, for any Hamiltonian H in a generic set there is a
generic set of energies in H(M) ⊂ R whose corresponding energy levels are transitive. We
observe that we need the full strength of Theorem 1 for the proof of Theorem 2. Using
Theorem 1 for individual level sets then we would be able to prove the weaker statement
that generic Hamiltonians and have a dense set of transitive energy levels. In fact, we can
pick the compact sets above to produce more accurate estimates:

Theorem 3. There exists a residual subset R in C2(M,R) such that for any H ∈ R the
non-transitive energy levels in H(M) have zero Lebesgue measure.

From Theorem 1, we can derive the following result concerning on the homoclinic
class of a hyperbolic closed orbit γ of H, which is the closure of the set of transversal
intersections between the stable and unstable manifolds of all points p in γ.

Theorem 4. There is a residual set R in C2(M,R) such that, for any H0 ∈ R and a generic
energy e in H0(M) there is a C2 neighborhood V of H0 and a residual subset RH0 of V
such that for any H ∈ RH0 any energy hypersurface of H−1({e}) is a homoclinic class.

Finally, combining Theorems 1, 3 and 4, we obtain a stronger result proving that, in this
context, the topologically mixing property is generic.

Theorem 5. There is a residual set R in C2(M,R) such that, for any H0 ∈ R and a generic
energy e in H0(M) there is a C2 neighborhoodV of H0 and a residual subsetRH0 ofV such
that for any H ∈ RH0 the Hamiltonian level (H, e) is topologically mixing. Furthermore, for
C2-generic Hamiltonians the non-topologically mixing energy levels have zero Lebesgue
measure.

The main tools to prove the previous results are the generic non-existence of resonances
for Hamiltonians and a version for Hamiltonians of the Connecting Lemma for pseudo-
orbits developed in [5] by Arnaud et al.. To state them, we need the notions of resonance
relations and of pseudo-orbits, which we now define.

Consider H ∈ C2(M,R). Given p ∈ Sing(H) we consider the eigenvalues {σ1, ..., σ2d} of
DXH(p). If q ∈ Per(H) has period `we consider the eigenvalues {σ1, ..., σ2d−2} of Φ`

H(q). A
resonance relation between {σ1, ..., σn} (n = 2d for singularities and n = 2d−2 for periodic
points) is a relation of the type σi =

∏n
j=1 σ

k j

j , for some i ∈ {1, ..., n} and k1, ..., kn natural
numbers such that either ki , 1, or else there exists j , i such that k j , 0. Since Φ`

H(q)
is symplectic, the following trivial resonance relations holds: σi = σi

∏d−2
k=1(σkσd+k)αk , for

naturals αk. A resonance relation different from these ones is called a non-trivial resonance
relation. Robinson proved in [14] that, C2-generically, there are not non-trivial resonance
relations.



GENERIC HAMILTONIAN DYNAMICS 5

Theorem 1.2. [14, Theorem 1] There is a residual R in C2(M,R) such that, for any H ∈ R,
any p ∈ Sing(H) and any q ∈ Per(H) with period `, the eigenvalues of DXH(p) and of
Φ`

H(q) do not satisfy non-trivial resonance relations.

Now, we recall the notion of pseudo-orbit and the Connecting Lemma for Hamiltonians.

Definition 1.2. Consider a Hamiltonian system (H, e,EH,e) and ε > 0. A sequence {xi}
n
i=0

on EH,e, with n ∈ N, is an ε-pseudo-orbit on EH,e of length n, if d(X1
H(xi), xi+1) < ε, for any

i ∈ {0, ..., n − 1}, where d(·, ·) denotes the distance inherited by the Riemannian structure.

Remark 1.1. For divergence-free vector fields, and so for Hamiltonian vector fields, we
have that Ω(H|EH,e ) = EH,e. Therefore, any x, y ∈ EH,e are connected by an ε-pseudo-orbit,
for any ε > 0.

Connecting Lemma: (for pseudo-orbits of Hamiltonians) Take H ∈ C2(M,R) and
a regular energy e ∈ H(M), such that the eigenvalues of any closed orbit of H do not
satisfy non-trivial resonances. Then, for any C2-neighborhood U of H, for any energy
hypersurface EH,e ⊂ H−1({e}) and for any x, y ∈ EH,e connected by an ε-pseudo-orbit, for
ε > 0, there exist H̃ ∈ U and t > 0 such that e = H̃(x) and Xt

H̃
(x) = y on the analytic

continuation EH̃,e of EH,e.

To prove this result, we have to resume the arguments used by Arnaud et al. [5, 10], and
to adapt them to the Hamiltonian setting. Besides the perturbation techniques, the core of
the proofs is the need to restrict our attention to the energy hypersurface, in order to perturb
the Hamiltonian and keep the energy, when analyzing the perturbations and their supports.
This strategy was firstly followed by Bonatti and Crovisier for diffeomorphisms (see [10]).
Later, jointly with Arnaud (see [5]), these authors proceeded with this methodology to
get the proof of the Connecting Lemma for pseudo-orbits of symplectomorphisms. The
main novelties in the symplectomorphisms context are the need for the perturbations to
be symplectic and the fact that closed orbits can be stably elliptic. This means that the
symplectomorphisms case cannot be reduced to the one treated in [10], where closed or-
bits are assumed to be hyperbolic. That is why, in [5], the authors prove this result for
symplectomorphisms, by doing the necessary changes.

For the Hamiltonian case, recall that the transversal linear Poincaré flow is, in fact, a
symplectomorphism and observe that we are assuming the absence of singularities on the
energy hypersurfaces. Keeping in mind the strategy described in [5], the novelties in the
proof of the Connecting Lemma for pseudo-orbits of Hamiltonian are the statement of ade-
quate definitions and, since the energy hypersurfaces are invariant by the Hamiltonian flow,
the need for the pseudo-orbit being completely contained in the same energy hypersurface.
Hence, we have to ensure the creation of symplectic perturbations without leaving the ini-
tial energy hypersurface. Recall that the energy hypersurface is indexed to the Hamiltonian.
Thus, it may change when we perturb the Hamiltonian. That is why, in the statement of the
Connecting Lemma, we want the energy of the points in the pseudo-orbit to be kept con-
stant, even if we C2-perturb the Hamiltonian. However, since we are allowed to push along
the energy levels (see the closing lemma strategy in Pugh-Robinson’s paper [13, §9(a)]),
the arguments stated in [5] can be adapted to the Hamiltonian case. At the Appendix, we
give a brief description of the necessary modifications in [5] in order to obtain the proof of
the Connecting Lemma.
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2. Proof of the Theorems

2.1. Proof of Theorem 1. Let R0 be the residual set given by Robinson’s theorem (see
Theorem 1.2) and let O be as in Lemma 1.1. Fix H0 ∈ R := R0 ∩ O and I ⊂ S(H0) be
a compact set. Let V be a small C2-neighborhood of H0 such that the Hamiltonian level
(H, e) is regular for all H ∈ V and e ∈ I. For H ∈ V and e ∈ I, let EH,e denote the analytic
continuation of EH0,e.

Consider a countable basis of open sets {Un}n on M and (ek)k∈N be a (countable) dense
subset of I. Fix k ∈ N. Given m, n ∈ N consider the subset Pk

n,m ⊂ V of C2-Hamiltonians
given by the following condition: H ∈ Pk

n,m if and only if

(2)
[
∪t>0Xt

H(Un ∩ EH,ek )
]
∩ (Um ∩ EH,ek ) , ∅.

In other words, for any H ∈ Pk
n,m the energy level of H associated to the energy ek intersects

both the open sets Un and Um of M and there exists some point in Un∩EH,ek whose positive
orbit intersects Um ∩ EH,ek .

Remark 2.1. It is important to observe that if H ∈ Pk
n,m then condition (2) actually implies

that there exists an open set Vk
n,m of energies containing ek so that

(3)
[
∪t>0Xt

H(Un ∩ EH,e)
]
∩ (Um ∩ EH,e) , ∅ for every e ∈ Vk

n,m.

In fact this is also an open condition on the Hamiltonian H.

First we prove that (2) is an open condition.

Lemma 2.1. For any k,m, n ∈ N, Pk
n,m is a C2-open set inV.

Proof. Given k,m, n ∈ N and H ∈ Pk
n,m arbitrary, there exists t > 0 and x ∈ Un ∩ EH,ek

so that Xt
H(x) ∈ Um ∩ EH,ek . Since Un,Um are open sets on M, by continuous dependence

of the trajectories of the flow on compact subsets of the real line, there exists an open
neighborhoodVH of H so that for any H̃ ∈ VH there is x̃ ∈ Un ∩ EH̃,ek

satisfying Xt
H̃

(x̃) ∈
Um ∩ EH̃,ek

. This shows thatVH ⊂ P
k
n,m and proves that Pk

n,m is an open set. �

In view of the previous lemma, if (A)c stands for the complement of the closure of
the set A then Pk

n,m ∪ P
k
n,m

c
is an open and dense subset of V for every k,m, n ∈ N and,

consequently,
RH0 := V ∩ R ∩

⋂
k,n,m∈N

(Pk
n,m ∪ P

k
n,m

c
)

is a residual subset ofV. The theorem will now follow from the following lemma.

Lemma 2.2. For any H ∈ RH0 and energy e ∈ I the Hamiltonian level EH,e is transitive.

Proof. Take H ∈ RH0 arbitrary and assume by contradiction that there exists an energy
e ∈ I so that EH,e is not transitive. We assume that e < {ek : k ≥ 1}, since otherwise
we have an easier situation and the proof follows the same lines as before with many
simplifications. Therefore, since {Un}n is a basis of the topology of M, there are open
subsets Un and Um of M such that

i. Un ∩ EH,e , ∅, Um ∩ EH,e , ∅, and
ii.

[
Xt

H(Un ∩ EH,e)
]
∩ (Um ∩ EH,e) = ∅ for every t ∈ R.

Since H ∈ RH0 then either H ∈ Pk
n,m or H ∈ Pk

n,m
c

for any k ∈ N. Thus there are two cases
to consider according to the description of the Hamiltonian H with respect to the energies
ek that approach e. More precisely,
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Case 1: There are infinitely many energies ek j → e (as j→ ∞) so that H ∈ Pk j
n,m

c
, ∀ j ≥ 1

In this first situation, pick x ∈ Un ∩ EH,e and y ∈ Um ∩ EH,e, and notice that x, y are
connected by an ε-pseudo-orbit in EH,e, for any ε > 0 (c.f. Remark 1.1). Since H ∈ R,
we can apply the Connecting Lemma for pseudo-orbits of Hamiltonians and for any C2-
neighborhoodU of H, there exists H̃ ∈ U such that e = H̃(x) and there is T > 0 such that
XT

H̃
(x) = y on EH̃,e. Since (2) is an open condition then there exists an open neighborhood

V of the energy e so that [
∪t>0Xt

H(Un ∩ EH,ẽ)
]
∩ (Um ∩ EH,ẽ) , ∅

for every ẽ ∈ V , which contradicts that e is approximated by energies ek j so that H does
not belong to Pk j

n,m.

Case 2: There is an open neighborhood V ⊂ R of e so that if an energy ek belongs to V
then necessarilly H ∈ Pk

n,m

In this second situation, for any ek ∈ V take the open neighborhood Vk
n,m of energies

containing ek given by Remark 2.1. Take Ṽ =
⋃
{k : ek∈V} V

k
n,m. By construction clearly

e ∈ Ṽ and [
∪t>0Xt

H(Un ∩ EH,ẽ)
]
∩ (Um ∩ EH,ẽ) , ∅ for every ẽ ∈ Ṽ

which contradicts condition (ii) above.

The contradiction arised from assuming that there would exist an energy e ∈ I so that
EH,e is not transitive. Hence, for any e ∈ I we obtain EH,e is transitive. Since H ∈ RH0 was
chosen arbitrary this finishes the proof of the lemma. �

2.2. Proof of Theorem 2. The purpose of this subsection is to prove that there is a residual
set R̃ in C2(M,R) and a residual subset E ⊂ R such that for any H ∈ R̃ and any energy
e ∈ E, the energy level EH,e is either empty or it is transitive.

Let R ⊂ C2(M,R) be the residual (thus dense) set given by Theorem 1. In consequence,
there exists a countable set (Hk)k≥1 of Hamiltonians in R that is dense in C2(M,R). For any
k ≥ 1 let Ek ⊂ R be the set of energies so that H−1

k (e) is either a regular energy level or the
empty set (by some abuse of notation, in either cases we shall say that (Hk, e) is regular).
Since Hk ∈ R then clearly Ek is an open and dense in R.

To proceed the proof, take a sequence (e j) j∈N of elements of E that is dense in R. For
any e j ∈ E and Hk ∈ R, there are open sets Wk

e j
⊂ R (containing e j) and Vk ⊂ C2(M,R)

(containing Hk) so that (H̃, ẽ) is regular for any H̃ ∈ Vk and any ẽ ∈ Wk
e j

. Applying

Theorem 1 (with I = Wk
e j ), there is a residual subset Re j

Hk
⊂ Vk so that EH̃,ẽ is transitive for

any H̃ ∈ Re j

Hk
and any ẽ ∈ Wk

e j
. In consequence,

(4) R̃k :=
⋂
j∈N

R
e j

Hk
⊂ Vk

is a residual subset of Vk and, by construction, EH̃,ẽ is transitive for any H̃ ∈ R̃k and any
ẽ ∈

⋃
j∈NWk

e j
(which is an open and dense set in R). Finally, R̃ :=

⋃
k∈N R̃k defines a

residual subset of C2(M,R) and E :=
⋂

k∈N(
⋃

j∈NWk
e j

) defines a residual subset of R that
verify the assertion of the theorem.

2.3. Proof of Theorem 3. This subsection is devoted to the proof of Theorem 3 concern-
ing estimates of the measure of energy levels with transitivity. Let ε > 0 be given and R
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be the residual set given by Theorem 1 (in particular R ⊂ O given by Lemma 1.1). For any
H0 ∈ R take a compact set of energy levels IH0,ε ⊂ S(H0) with the property that

Leb(H0(M) \ IH0,ε) < ε
2 Leb(H0(M))

(or equivalently Leb(IH0,ε) > (1 − ε2) Leb(H0(M))). Thus, by Theorem 1 there exists a
C2 neighborhood V of H0 and a residual subset RH0 of V (both depending on H0 and ε)
such that for any H ∈ RH0 and e ∈ IH0,ε the Hamiltonian level (H, e) is transitive. We may
assume without loss of generality (reducing the neighborhood if necessary) that it holds
additionally that the symmetric difference satisfies

Leb(H(M)4H0(M)) ≤ εLeb(H0(M))

for every H ∈ V. Consequently, if H ∈ RH0 we conclude

(5)
Leb

(
e ∈ H(M) : (H, e) is transitive

)
Leb(H(M))

≥
Leb

(
IH0,ε

)
Leb(H(M))

>
(1 − ε2) Leb(H0(M))
(1 + ε) Leb(H0(M))

= 1 − ε.

Observe that any element in the residual subset

Rε =
⋃

H0∈R

RH0 ⊂ C2(M,R)

satisfies (5). Now, we just consider the residual subset R =
⋂

n∈N R1/n in C2(M,R) which
clearly satisfies the statement of the theorem.

2.4. Proof of Theorem 4. In [5, §5.1] it is proved that for generic symplectomorphisms
there is only a single homoclinic class using that generic symplectomorphisms are transi-
tive. Therefore, we could try to adopt the same strategy to obtain Theorem 4 from The-
orem 1. Unfortunately, the argument fails when we consider the analytic continuation
of the hyperbolic periodic point (defining the homoclinic class) which could be inside a
non-transitive energy level. For this reason we must follow a different approach.

Besides, we could also try to use the lower semicontinuity of the homoclinic class re-
ferred also in [5, pp. 1431]. Unfortunately, the standard argument, which is typical in
robust transitive dynamics, of using twice the connecting lemma to glue different homo-
clinic classes cannot be done since the perturbation given by the connecting lemma (see
proof of Claim 1 below) may originate a Hamiltonian without nice properties like transi-
tivity in a given energy level.

Proof of Theorem 4. LetKS ⊂ C2(M,R) be the C2 residual subset of Kupka-Smale Hamil-
tonians given by [14], i.e., for all H ∈ KS all closed orbits are hyperbolic or elliptic.
Note that, by Birkhoff fixed point theorem, the hyperbolic orbits on M are dense (cf. [12]
Proposition 3.1, Corollary 3.2 and §6). Indeed, borrowing Pugh-Robinson’s generic Fu-
bini argument (see [13, pp. 312]), Newhouse’s result can be strengthened to: the generic
compact energy hypersurface of the generic C2 Hamiltonian contains a dense set of closed
hyperbolic points. We denote by N ⊂ C2(M,R) this previous C2-generic set of Hamilto-
nians and by T1 the residual given by Theorem 1. We claim that R := KS ∩ N ∩ T1 is a
residual subset in the conditions of Theorem 4. Given H0 ∈ R let e be in the intersection of
the open and dense set given by Theorem 1 and the residual set of energies of Newhouse’s
theorem. Considering I := {e} in Theorem 1, there is a C2 neighborhood V of H0 and a
residual subset RH0 ofV (depending also on I) such that for any H ∈ RH0 we have that:

(i) the Hamiltonian level (H, e) is transitive;
(ii) the hyperbolic closed orbits are dense in (H, e) and

(iii) the hyperbolic closed orbits have constant index equal to d.
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The proof of Theorem 4 rely on the next result which can be understood as a sharper
version of Robinson’s Kupka-Smale theorem ([14]) with the presence of transitivity, de-
manding the intersections of stable/unstable manifolds of hyperbolic closed orbits to be
transversal and non-empty.

Proposition 2.3. There exists a residual subset R̃H0 of V such that for all H ∈ R̃H0 and
any hyperbolic closed orbits γ1, γ2 ∈ EH,e we have Wu

H(γ1) t W s
H(γ2) , ∅.

Proof. Consider the set Rk,` of Hamiltonians H ∈ V such that for all hyperbolic closed
points γ1, γ2 ∈ EH,e with period < k:

(a) Wu
H,`(γ1) t W s

H,`(γ2) (here Wu
H,`(γ1) denotes the unstable manifold of γ1 with size

`) and
(b) Wu

H(γ1) ∩W s
H(γ2) , ∅ and intersect transversely at some point.

We claim that Rk,` is C2-open and dense in V. The C2-openess is clear from the
transversality property, continuity of local stable/unstable manifolds and the constant index
property in (iii). To prove the C2-denseness we assume by contradiction that there exists
an open setW ⊂ V such that Rk,` ∩W = ∅. Since (a) is a C2-open and dense property we
can take H1 ∈ W∩RH0 and hyperbolic closed points γ1, γ2 ∈ EH,e of period < k satisfying
(a) but not (b). Indeed, we can take a smaller neighborhood W̃ ⊂ W such that every
H1 ∈ W̃∩RH0 and hyperbolic closed points γ1, γ2 ∈ EH,e of period < k satisfies (a) but not
(b). By property (i) above and the Connecting Lemma for Hamiltonians in [17, Theorem
E] there exists H2 ∈ W̃ such that Wu

H2
(γ1) ∩W s

H2
(γ2) , ∅ and by another perturbation we

find H3 ∈ W̃ such that Wu
H3

(γ1) ∩ W s
H3

(γ2) , ∅ and transversal at some point which is a
contradiction.

Just consider the residual subset R̃H0 :=
⋂

k∈N
⋂
`∈N Rk,` ofV. Finally, if H ∈ R̃H0 then

for any hyperbolic closed points γ1, γ2 ∈ EH,e we have Wu
H(γ1) t W s

H(γ2) , ∅. �

In conclusion, by property (ii) the hyperbolic closed orbits are dense in EH,e, thus the
closure of all hyperbolic closed orbits in EH,e is the whole hypersurface EH,e. Then, Propo-
sition 2.3 assure that any two hyperbolic closed orbits in EH,e are homoclinically related
and Theorem 4 is proved.

�

2.5. Proof of Theorem 5. In this section, we state the proof of two auxiliary results for
Hamiltonian systems defined on a 2d-dimensional symplectic manifold, for d ≥ 2. The
first one (Lemma 2.4) is a version of the C1-Pasting Lemma for Hamiltonians. Actually,
in the Hamiltonian setting, the proof of this result is much more simple. The second one
(Lemma 2.5) asserts that, C2-generically, the quotient between the period of two distinct
closed orbits of a Hamiltonian is irrational.

Lemma 2.4. (Pasting Lemma for Hamiltonians) Fix H1 ∈ Cr(M,R), 2 ≤ r ≤ ∞, and let
∅ , K ( M be a compact set and U be a small neighborhood of K. Given ε > 0, there
exists δ > 0 such that if H2 ∈ C s(M,R), for 2 ≤ s ≤ ∞, is δ-C`-close to H1 on U (where
` := min {r, s}) then there exist H3 ∈ C`(M,R) such that: (i) H3 = H2 on K (ii) H3 = H1 on
Uc, and (iii) H3 is ε-C`-close to H1.

Proof. Take α ∈ C∞(M, [0, 1]) such that α ≡ 1 on K and α ≡ 0 on Uc. Now we take
H3 = αH2 + (1 − α)H1 which clearly satisfies H3 = H2 on K and H3 = H1 on Uc. Finally,

‖H3 − H1‖C` ≤
∑̀
k=0

(
`
k

)
‖α1‖C` ‖H2 − H1‖C` ≤

∑̀
k=0

(
`
k

)
‖α1‖C`δ < ε
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where we used the general Leibniz rule and that δ = δ(ε, `) can be chosen to satisfy the
right-hand side inequality. �

Lemma 2.5. There is a residual R in C2(M,R) such that, for any H ∈ R, any distinct

closed orbits for H, γ1 and γ2, with periods `1 and `2 (respectivelly), satisfy
`1

`2
∈ R\Q.

Proof. Fix n ∈ N. By Robinson’s results [14], the set An of H ∈ C2(M,R) such that its
singularities are hyperbolic and its closed orbits of period smaller than n are hyperbolic or
elliptic, is open and dense in C2(M,R).

Let {ri}
∞
i=1 be an enumeration of the positive rational numbers, with a fixed order. Then

consider the open and dense set Bn of Hamiltonians H ∈ An such that for any two distinct
closed orbits γ1 and γ2 of period smaller than n the following holds `1

`2
< {ri}

n
i=1.

Now, this proof follows the ideas stated in the proof of [6, Lemma 2.2], but using the
version of the Pasting Lemma for Hamiltonians, proved in Lemma 2.4.

Fix ε > 0 and H1 ∈ C2(M,R). By density of An, there is H2 ∈ An, ε-C2-close to H1.
Since H2 ∈ An the closed orbits with period less than n of H2 are isolated. So, they are
only finitely many, say {γi}

m
i=1, for fixed m ∈ N.

Given a positive sequence {si}
m
i=1, the vector field XHi

= 1
si+1 XH2 is also a Hamiltonian

vector field, for any 1 ≤ i ≤ m. Actually, by (1), XHi
is associated to the Hamiltonian

1
si+1 H2. Observe that if we choose si arbitrarily close to 0 then Hi is ε-C2-close to H2.

For any 1 ≤ i ≤ m, consider tubular compact neighborhoods Ki of γi, sufficiently
small such that some open neighborhoods Wi of Ki are pairwise disjoint. The idea now
is to apply, recursively m times, Lemma 2.4, in order to define H̃m ∈ C2(M,R) such that
`H̃m,γi

= (1 + si)`H2,γi , for 1 ≤ i ≤ m. Moreover, choosing si sufficiently small H̃m can be
taken C2-arbitrarily close to H2, hence belonging to An. Up to diminishing, if necessary,
{si}

m
i=1, we may assume without loss of generality that

`H̃m ,γi
`H̃m ,γ j

< {ri}
n
i=1, for i , j and also that

H̃m ∈ An. Thus, H̃m ∈ Bn. Since Bn is open and dense in C2(M,R), for any n ∈ N, the
desired residual subset of C2(M,R) is given by R := ∩n∈NBn. �

Proof of of Theorem 5. Let R0 be the residual set given by Lemma 2.5 and R3 be the resid-
ual set given by Theorem 4. Define R := R0 ∩ R3. Fix H0 ∈ R. Since H0 ∈ R3, by
Theorem 4, for a generic energy e in H0(M) there is a C2 neighborhood V of H0 and a
residual subset RH0 of V such that for any H ∈ RH0 any energy hypersurface of H−1({e})
is a homoclinic class. So, to conclude the proof of Theorem 5, we just have to prove that
the Hamiltonian level (H, e) is topologically mixing.

Let EH,e be an energy hypersurface of H−1({e}). Let us prove that EH,e is topologically
mixing, that is, for any open, nonempty subsets U and V of EH,e, there is τ ∈ R such that
Xt

H(U) ∩ V , ∅, for any t ≥ τ.
Since hyperbolic closed orbits are dense in the homoclinic class and the index is con-

stant and equal to d, we can find two different hyperbolic closed orbits γ1 and γ2 of H,
with period `1 and `2, such that ind(γ1) = ind(γ2) = d and γ1 ∩ U , ∅ and γ2 ∩ V , ∅.

Moreover, since H ∈ R0, we have that
`1

`2
∈ R\Q.

Fix x ∈ γ1 ∩ U, y ∈ γ2 ∩ V and z ∈ Wu(γ1) ∩ W s(γ2). Thus, there is τ1 > 0 such that
X−(τ1+m`1)

H (z) ∈ Wu(x) for every m ∈ N and lim
m→+∞

X−(τ1+m`1)
H (z) = x. Then, there is t1 > 0

such that X−(t1+m`1)
H (z) ∈ U and, therefore, z ∈ Xt1+m`1

H (U), for every m ≥ N1. Similarly,
there is t2 > 0 and a small ε > 0 such that Xt2+n`2+s

H (z) ∈ V , for every |s| < ε and n ≥ N2.
From the transitivity of the future orbits of irrational rotations of the circle (cf. [1, Lemma
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2]) and the fact that
`1

`2
∈ R\Q, the set {m`1 + n`2 + s : m ≥ N1, n ≥ N2, |s| < ε} contains

an interval of the form [T,+∞), for some T > 0. Hence, for any t ≥ t1 + t2 + T , there are
m ≥ N1, n ≥ N2 and |s| < ε such that t = t1+t2+m`1+n`2+s. Then, Xt2+n`2+s

H (z) ∈ Xt
H(U)∩V ,

for any t ≥ t1 + t2 + T . So, EH,e is a topologically mixing energy hypersurface. Therefore,
the Hamiltonian level (H, e) is topologically mixing. �

Appendix: Hamiltonian Connecting Lemma for pseudo-orbits

This Appendix is quite technical and a more or less direct application of the arguments
in [5] with the conceptual adaptations and perturbations required for Hamiltonians. In what
follows, and for the sake of completeness, we intend to give a short description of the proof
explaining the essential steps and the main differences in our setting. We notice that we do
not claim any novelty in the following approach. The ideas follows [5] but the tools are, of
course, with a Hamiltonian flavor.

As explained in [5, 10, 6], the proof of the Connecting Lemma for pseudo-orbits is di-
vided in three main parts. The first step is to prove that the Connecting Lemma concerns
on local perturbations. These perturbations motivate the definition of perturbation boxes
whose support must be in the interior of small open sets, pairwise disjoint till a sufficiently
large number of iterates. Separately, we need to analyze the dynamics near closed orbits
with small period because these orbits are not contained in any perturbation box. Finally,
we must analyze the global dynamics, in order to cover any orbit with perturbation flow-
boxes.

2.6. Local perturbations. We proceed to describe the modifications of the local perturba-
tion methods in the Hamiltonian context, namely the lift perturbation process and selection
of tilings adapted to pseudo-orbits.

Lift axiom. Fix p ∈ Per(H) and a small neighborhood Up of p. By the Darboux Theorem
(see, for example, [3, Theorem 3.2.2]), there is a smooth symplectic change of coordinates
ϕp : Up → TpM, such that ϕp(p) = ~0. Denote by Np,δ the ball centered in ~0 at the normal
fiber at p and with radius δ. For a given δ > 0 depending on p we let fH : ϕ−1

p (Np,δ) →
ϕ−1

X1
H (p)

(NX1
H (p)) be the canonical Poincaré time-one arrival associated to H, in fact, given a

regular point p, we can chose any τ > 0 less than its period, if p is periodic. In [13], when
proving the closing lemma for Hamiltonians, Pugh and Robinson show that the lift axiom
is satisfied for Hamiltonians, and they obtain the closing from the lifting. In short, lifting is
a way of pushing the orbit along a given direction by a small Hamiltonian perturbation C2-
close to the identity. We point out that we never have to push in the direction of increasing
energies, i.e. it is possible to push only along the energy surface. Furthermore, we recall
the key point on the using of the C1 topology of the Hamiltonian vector field: “...one can
lift points p in prescribed directions v with results proportional to the support radius”
([13, pp. 266]). Allowing that the perturbations can be done in several flowboxes the
proportionality constant can be made arbitrarily close to one.

Lift Axiom for Hamiltonians. (cf. [13, §9 (a)]) Consider a Hamiltonian H ∈ C2(M,R) and
let U be a C2-neighborhood of H. Then there are 0 < ε ≤ 1 and a continuous function
δ : M \ Sing(XH) → (0, 1), both depending on H and on U, such that, for any p and
v ∈ Np,δ(p) ∩ ϕp(H−1(H(p))), there exists H̃ ∈ U satisfying:

• f −1
H ◦ fH̃(p) = ϕ−1

p (εv);
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• supp(XH̃−XH) is contained in the flowboxT =
⋃

t∈(0,T ) Xt
H(B‖v‖(p)),where B‖v‖(p)

is taken in a transversal section of p and T = T (y) is such that T (p) = 1 and
XT (y)

H (y) ∈ B‖v‖(XH(p)), for any y ∈ B‖v‖(p).

Tiled sections and perturbation flowboxes. Given a symplectic chart ϕ : U → R2d, we say
that the cross-section C to the flow on EH,e on the chart (U, ϕ) is a tiled section if ϕ(C) ⊂ R2d

is symplectomorphic to the standard cube in R2d−2, tilled by smaller cubes by homotheties
and translations (see [10, Fig. 1]). Write C = ∪m

k=1Tk, with m ∈ N, where each Tk is called
a tile of C.

Figure 1. Representation of a pseudo-orbit preserving the tiling.

Definition 2.1. Consider a Hamiltonian system (H, e,EH,e), a tiled section C = ∪m
k=1Tk on

EH,e and a constant T > 0. We say the pseudo-orbit {xi}
n
i=0 on EH,e (n ∈ N) preserves the

tiling in the injective flowbox FH(C,T ) = ∪t∈[0,T ]Xt
H(C) if x0, xn < FH(C,T ) and for any

i ∈ {1, ..., n − 1}:
• if X[0,1]

H (xi) ∩ C ∈ Tk for some k ∈ {1, ...,m}, then X(−2,0)
H (xi+1) ∩ C ∈ Tk and

• if X1
H(xi) ∈ X[1,T ]

H (C), then xi+1 ∈ O+
H(xi).

This definition implies that the intersection of the pseudo-orbit {x j}
n
j=0 with the flow-

box FH(C,T ) is an union of segments of orbits such that the segment X[0,1](xi) intersects
the tilled cross-section C, and xi+k (k ≥ 1) belong to the orbit of xi+1 while the segment
X[0,1](xi+k) intersects the flowbox FH(C,T ) (see Figure 1). Moreover, as Pugh and Robin-
son explained in [13, §9 (a)], local perturbations on H do not change the energy hyper-
surfaces in the boundary of the flowboxes where the perturbations take place. So, we are
allowed to push along energy levels.

The Hayashi Connecting Lemma is a key ingredient to prove the Connecting Lemma for
pseudo-orbits of Hamiltonians and, as stated in [17], it can be adapted for Hamiltonians.
In fact, following [5, Théorème 5], we can extract a slightly stronger statement of the
Connecting Lemma for Hamiltonians in [17, Theorem E], which can be seen as a theorem
of existence of perturbation flowboxes:

Theorem 2.6. Given a Hamiltonian system (H, e,EH,e) and a C2-neighborhood U of H,
there exists T > 0 such that if C is a tiled section, then FH(C,T ) = ∪t∈[0,T ]Xt

H(C) is a
perturbation flowbox of length T , that is: for any pseudo-orbit {xi}

n
i=0 on EH,e preserving

the tiling in FH(C,T ), there exist H̃ ∈ U preserving the energy hypersurface, such that
H̃ = H restricted to the energy hypersurface and outside FH(C,T ), and a pseudo-orbit
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{y j}
m
j=0 on EH̃,e = EH,e, with m ∈ N, such that y0 = x0 and ym = xn and the intersection of

the pseudo-orbit {y j}
m
j=0 with FH(C,T ) is a segment of a true orbit of a point y j for Xt

H̃
.

For notation simplicity we will call the set supp(C) = ∪t∈[0,T ]Xt
H(closure(C)) the sup-

port of the perturbation flowbox C (inside EH,e).

2.7. Avoidable closed orbits and covering families. Notice that the jumps of a pseudo-
orbit have no reason to respect the tiling of some perturbation flowbox and these are not
definable for closed orbits with small period. To deal with this difficulty, we introduce the
concept of avoidable closed orbits and of covering families.

Avoidable closed orbits: This kind of orbits are used to derive perturbation flowboxes
with disjoint supports, in such a way that the pseudo-orbits stay away from closed orbits
with small period. We anticipate that, if EH,e has no orbits with small period and all the
closed orbits are uniformly avoidable, then we will be able to build a covering family of
perturbation flowboxes for EH,e. The next definition is adapted from [5, Definition 3.10].
Consider a Hamiltonian system (H, e,EH,e) and a closed orbit γ of H on EH,e. Let U be
a C2-neighborhood of H and fix T > 0. We say a closed orbit γ is avoidable for (U,T ),
if, for any neighborhood V0 of γ and for any t > 0, there are ε > 0, open neighborhoods
W ⊂ V ⊂ V0 of the closed orbit γ in EH,e, and a family of C = {Ci}i of tiled cross-
sections so that the perturbation flowboxes FH(Ci,T ) = ∪t∈[0,T ]Xt

H(Ci) of length T in EH,e

are contained in V and have disjoint supports, and satisfies:
(a) there exist two families of compacts I and O contained in the interior of the

tiles of C such that any segment of any ε-pseudo-orbit on EH,e starting outside
V (respectively, inside W) and ending inside W (respectively, outside V) inter-
sects X[0,1]

H (I) for some compact I ∈ I (respectively, intersects X[0,1]
H (O) for some

compact O ∈ O);
(b) for any compacts I ∈ I and O ∈ O, there exist a pseudo-orbit on EH,e, with jumps

inside X[0,1]
H (C) and preserving the tile of C, starting in I and ending in O;

(c) for any x in the closure of FH(C,T ), the first return time of XT
H(x) to the closure of

the perturbation flowboxes is larger than t.
In a few words, a closed orbit γ is avoidable for (U,T ) if, for any t > 0, there exists

a family of perturbation flowboxes of length T (with tiled cross sections) such that, given
a pseudo-orbit with starting and ending points far from γ, but passing very close of γ, we
can exchange the segments of the pseudo-orbit passing close of γ by segments of another
pseudo-orbit with jumps inside the tiles replacing the original pseudo-orbit by another with
smaller number of elements. By Theorem 1.2 the closed orbits of a C2-generic Hamiltonian
are uniformly avoidable.

The closed orbits for the Hamiltonian H on EH,e are called uniformly avoidable if they
are isolated and there is a C2-neighborhood U of H and T > 0 so that all closed orbits in
EH,e are avoidable for (U,T ).

Covering families: Given a Hamiltonian system (H, e,EH,e), we want to cover the orbits
on EH,e by a family of perturbation flowboxes, with pairwise disjoint supports. In general,
if EH,e contains closed orbits with small period, then EH,e cannot have a covering family. In
fact, this kind of closed orbits are disjoint from the perturbation flowboxes. This motivates
the definition of covering families outside V = ∪r

j=1V j, where the sets V j (1 ≤ j ≤ r) are,
in fact, neighborhoods of these closed orbits with small period.

Let U be a C2-neighborhood of H and let (FH(Ci,T ))i denote a family of perturba-
tion flowboxes for (H,U), with pairwise disjoint supports, and V denote a finite family
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of non-empty open subsets of EH,e with pairwise disjoint supports. We say that a family
(FH(Ci,T ))i of perturbation flowboxes for (H,U) with disjoint supports is a covering fam-
ily of EH,e if there exists a family of compact subsetsD ⊂

⋃
i interior(Ci) and t > 0 so that

any orbit segment of x ∈ EH,e of length ≥ t intersects some element in D. The following
definition is an adaption of [5, Definition 3.2] for Hamiltonians. A finite set of perturba-
tion flowboxes (FH(Ci,T ))i for (H,U) and with pairwise disjoint supports is said to be a
covering family of EH,e outsideV if there are

• t > 0 and ε > 0;
• an open set W j and a compact set F j, such that F j ⊂ W j ⊂ V j, for every j ∈
{1, ..., r};

• a finite family of compacts D = ∪s
i=1Di on C, such that every Di is contained in

the interior of a tile of C =
⋃

i Ci;
• two families I j and O j contained in D such that the support of the flowboxes of

the tiles of C containing this compacts is contained in V j, for any j ∈ {1, ..., r},
such that any segment of any ε-pseudo-orbit on EH,e:

(a) with length ≥ t intersects some F j or a compact ofD;
(b) starting outside V j and ending inside W j intersects a compact of I j;
(c) starting inside W j and ending outside V j intersects a compact of O j;

and for any j ∈ {1, ..., r} and for any compact sets I ⊂ I j and O ⊂ O j, there exists a
pseudo-orbit with jumps inside the tiles of C, with starting point in I and ending point in
O. Roughly speaking, given a covering family of EH,e outside V, any pseudo-orbit either
returns regularly to the tiled cross sections, during the time it passes out of V or else,
intersects a compact set F j ⊂ V j. In this last situation, the pseudo-orbit must go through an
“in set” I ⊂ I j and then through an “out set” O ⊂ O j. Moreover, we can even switch the
segment of the pseudo-orbit between I and O by a pseudo-orbit with jumps inside the tiles
of C. The existence of these objects follows, up to considering cross sections, from [5, §4]
for symplectomorphisms.

2.8. Connecting pseudo-orbits. Arnaud et al. proved, in [5, Proposition 4.2], that if the
eigenvalues of any closed orbit of a symplectomorphism do not satisfy non-trivial res-
onance relations, then the closed orbits are uniformly avoidable. Therefore, since the
transversal linear Poincaré flow is a symplectomorphism, then for any H ∈ C2(M,R) and
any periodic point p of H with period `, the eigenvalues of Φ`

H(p) do not satisfy non-trivial
resonances, then the closed orbits of H are uniformly avoidable.

Hence, to prove the Connecting Lemma for pseudo-orbits of Hamiltonians it is enough
to show that if Per(H) on EH,e are uniformly avoidable, then, for any C2-neighborhoodU
of H and for any x, y ∈ EH,e, there is H̃ ∈ U and t > 0, such that H̃(x) = e and Xt

H̃
(x) = y.

It is obvious that this statement follows immediately if y ∈ OH(x). In fact, to prove the
Connecting Lemma, it is enough to show it for certain points x, y ∈ EH,e. Indeed, the same
argument as the ones in [5, Lemma 3.12] allows us to reduce the proof to the case when
x, y are not closed orbits. So, we assume that x, y < Per(H) and y < OH(x) for every H in
a C2-neighborhoodU0. Using Kakutani towers for flows ([4, 7]) and adapting the ideas of
the proof in [5, Proposition 3.13] we obtain that there exist a neighborhoodU ⊂ U0 of H,
a family of disjoint open sets V and a family of perturbation flowboxes (FH(Ci,T ))i for
(H,U) with disjoint supports, both V and (FH(Ci,T ))i not containing x nor y, such that
the perturbation flowboxes covering EH,e outsideV. Now, the classical strategy developed
in [10] and carried out in the proof of [5, Proposition 3.4] for symplectomorphisms allows
us to obtain a pseudo-orbit preserving the tiling and, consequently one erases, flowbox
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after flowbox, all the jumps of the pseudo-orbit. Thus, there exist H̃ ∈ U and t > 0, such
that H̃(x) = e and Xt

H̃
(x) = y.

Acknowledgements: MB was partially supported by National Funds through FCT (Fun-
dação para a Ciência e a Tecnologia) project PEst-OE/MAT/UI0212/2011. CF was sup-
ported by FCT - Fundação para a Ciência e a Tecnologia SFRH/BD/33100/2007. JR was
partially supported by FCT - Fundação para a Ciência e a Tecnologia through the project
CMUP: PTDC/MAT/099493/2008. PV was partially supported by a CNPq-Brazil post-
doctoral fellowship at University of Porto.

References

[1] F. Abdenur, A. Avila and J. Bochi, Robust transitivity and topological mixing for C1-flows. Proc. Amer.
Math. Soc., 132, 3 (2003) 699–705

[2] F. Abdenur and S. Crovisier, Transitivity and topological mixing for C1 diffeomorphisms. Essays in Math-
ematics and its Applications (2012), 1–16, Springer Berlin Heidelberg

[3] R. Abraham and J.E. Marsden, Foundations of Mechanics. The Benjamin/Cummings Publishing Com-
pany. Advanced Book Program, 2nd edition, 1980

[4] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows. Duke Math. J., 9 (1942)
25–42

[5] M.-C. Arnaud, C. Bonatti and S. Crovisier, Dynamique sympletiques génériques. Erg. Th. & Dyn. Syst.
25, 5 (2005) 1401–1436

[6] M. Bessa, A generic incompressible flow is topological mixing. C. R. Acad. Sci. Paris, Ser. I, 346 (2008)
1169–1174

[7] M. Bessa, The Lyapunov exponents of generic zero divergence-free three-dimensional vector fields. Erg.
Th. & Dyn. Syst., 27, 6 (2007) 1445–1472

[8] M. Bessa and J. Lopes Dias, Generic Dynamics of 4-Dimensional C2 Hamiltonian Systems. Commun. in
Math. Phys., 281 (2008) 597–619

[9] M. Bessa and J. Lopes Dias, Hamiltonian elliptic dynamics on symplectic 4-manifolds. Proc. Amer. Math.
Soc., 137 (2009) 585–592
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