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In the present paper we study the thermodynamical properties of finitely gener-
ated continuous subgroup actions. We propose a notion of topological entropy and
pressure functions that does not depend on the growth rate of the semigroup and
introduce strong and orbital specification properties, under which, the semigroup
actions have positive topological entropy and all points are entropy points. More-
over, we study the convergence and Lipschitz regularity of the pressure function
and obtain relations between topological entropy and exponential growth rate of
periodic points in the context of semigroups of expanding maps, obtaining a par-
tial extension of the results obtained by Ruelle for Zd-actions33 . The specification
properties for semigroup actions and the corresponding one for its generators and
the action of push-forward maps is also discussed.
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I. INTRODUCTION

The thermodynamical formalism was brought from statistical mechanics to dynamical
systems by the pioneering works of Sinai, Ruelle and Bowen9,10,32,37 in the mid seventies.
The correspondance between one-dimensional lattices and uniformly hyperbolic maps al-
lowed to translate and introduce several notions of Gibbs measures and equilibrium states
in the realm of dynamical systems. The present study of the thermodynamical formalism
for non-uniformly hyperbolic dynamical systems is now paralel to the development of a
thermodynamical formalism of gases with infinitely many states, a hard subject not yet
completely understood. Moreover, the notion of entropy constitutes one of the most im-
portant in the study of dynamical systems (we refer the reader to Katok25 and references
therein for a survey on the state of the art).

An extension of the thermodynamical formalism for continuous finitely generated group
actions has revealed fundamental difficulties and the global description of the theory is
still incomplete. A first attempt was to consider continuous actions associated to finitely
generated abelian groups. The statistical mechanics of expansive Zd-actions satisfying a
specification property was studied by Ruelle33, where he introduced a pressure function,
defined on the space of continuous functions, and discussed its relations with measure
theoretical entropy and free energy. The notion of specification was introduced in the
seventies as a property of uniformly hyperbolic basic pieces and became a characterization of
complexity in dynamical systems. The crucial fact that continuous Zd-actions on compact
spaces admit probability measures invariant by every continuous maps associated to the
group action, allowed Ruelle to prove a variational principle for the topological pressure
and to build equilibrium states as the class of pressure maximizing invariant probability
measures. This duality between topological and measure theoretical complexity of the
dynamical system is very fruitfull, e.g. was used later by Eizenberg, Kifer and Weiss18

to establish large deviations principles to Zd-actions satisfying the specification property.
Other specification properties of interest have been introduced recently (see e.g.14,39).
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A unified approach to the thermodynamical formalism of continuous group actions is
still unavailable, while still few definitions of topological pressure exists and most of them
unrelated. Moreover the connection between topological and ergodic properties of group
actions still fails to provide a complete description the complexity of the dynamical sys-
tem. In many cases the existent definitions for topological entropy take into account either
abelianity, amenability or growth rate of the corresponding group. A non-extensive list of
contributions by many authors include important contributions by Ghys, Langevin, Wal-
czak, Friedland, Lind, Schmidt, Bufetov, Bís, Urbanski, Ma, Wu, Miles, Ward, Chen, Zheng
and Schneider among others (see e.g.3,4,5,6,11,20,21,27,28,29,35,43 and references therein).

Our main goal here is to describe the topological aspects of the thermodynamical for-
malism for semigroup actions for general finitely generated semigroup actions, where no
commutativity or conditions on the semigroup growth rate are required. Inspired by a
notion of topological entropy of free semigroups by Bufetov11, given a finitely generated
semigroup (G,G1) where G1 = {id, g1, . . . , gm} is a set of generators we consider the coding

ι : Fm → G
in . . . i1 7→ gin ◦ · · · ◦ gi1

(1)

where Fm denotes the free semigroup with m elements. This coding is injective if and only
if G is a free semigroup. Our thermodynamical approach for the semigroup action is to
average the complexity of each dynamics g ∈ G with a weight corresponding to the size of
ι−1(g), that is, how often a particular semigroup element g arises by concatenation of the
generators.

E.g. if all generators commute and do not have finite order then G ' Zm and every
element in G has the same weight, a property that will change substantially in the case
of semigroups of exponential growth with a non-trivial abelian subgroup. This approach
has the advantage of being independent of the semigroup growth rate, hence to propose a
unified approach to the study of semigroups with substantially different growth rates (see
Section V for examples) and the disadvantage to depend a priori on the set of genera-
tors for the semigroup. Inspired by several forms of the specification property for discrete
time transformations with some hyperbolicity (see e.g.30,31,34,36,39), we also introduce some
notions of strong and orbital specification properties for continuous actions associated to
finitely generated (not necessarily abelian) groups which are of independent interest. In
the particular case of semigroups (G,G1) of expanding maps our main contributions can be
summarized as follows:

(a) we introduce a notion of topological pressure Ptop((G,G1), ϕ,X) which in independent
of the semigroup growth rate;

(b) we prove that the orbital specification properties hold and, consequently, the local
complexity at every neighborhood of any point coincides with the topological pressure
of the dynamical system (see the notions of ‘entropy point’ in Subsection III A);

(c) using expansiveness, we prove that topological pressure can be computed at a finite
scale (omitting a limit in the original definition)

(d) we prove that the topological pressure function t 7→ Ptop((G,G1), tϕ,X) for Hölder
continuous observables ϕ is a uniform limit of C1 functions, hence it is Lipschitz and
differentiable Lebesgue almost everywhere; and

(d) the exponential mean growth of periodic points is bounded from below by topological
entropy Ptop((G,G1), ϕ,X).

In33, Ruelle studied expansive Zd-actions with specification property and obtained that
the topological pressure function is smooth, existence and uniqueness of equilibrium states.
Here we obtained the Lebesgue almost everywhere differentiability of the pressure function
for semigroups of expanding maps that may have exponential growth. To the best of our
knowledge these are the first results after33 (that considered Zd-actions) where there are
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partial results on the the differentiability of the topological pressure function for group or
semigroup actions.

Finally we observe that this is the first part of a program to describe the thermodynamical
properties of semigroup actions following the program of Ruelle33, and the construction of
relevant stationary measures that describe the ergodic theory of finitely generated semigroup
actions of expanding maps will appear elsewhere15. The relation between orbital specifi-
cation properties for the group action is also discussed and a class of examples of group
actions is given where orbital specification properties present a flavor of the non-uniform
versions arising in non-uniformly hyperbolic dynamics. In fact, we also study semigroups
with non-expanding elements and compare these with the notions of entropy introduced by
Ruelle33 and Ghys, Langevin, Walczak21. For the convenience of the reader, we describe
briefly the beginning of each section the main results to be proved there. Except when we
mention explicit otherwise, we shall consider the context of semigroup actions and, in case
the existence of inverse elements is needed, we shall make precise mention to that fact. We
refer the reader to the statement of the main results and to Section V for some examples.

This paper is organized as follows. In Section II we introduce both the strong specifi-
cation property and some orbital specification properties for finitely generated semigroups
actions and discuss the relation between these notions and the specification property for
the generators. The connections between specification properties for group actions, for the
push-forward group actions and hyperbolicity are also discussed.

In Section III we introduce a notion of topological entropy and pressure for continuous
semigroup actions and study group actions that exhibit some forms of specification. In
particular, we prove that these have positive topological entropy and every point is an
entropy point.

In Section IV we study the semigroup action induced by expanding maps. We prove that
these semigroups satisfy the previous notions of specification and that topological entropy
is a lower bound for the exponential growth rate of periodic orbits. We also deduce that
the pressure function acting on the space of Hölder continuous potentials is Lipschitz, hence
almost everywhere differentiable along families tϕ with t ∈ R and ϕ Hölder continuous.

Finally, in Section V we provide several examples where we discuss the specification
properties and establish a comparison between some notions of topological entropy.

II. SPECIFICATION FOR A FINITELY GENERATED SEMIGROUP ACTIONS

In this section we introduce the notions of specification and orbital specification properties
for the context of group and semigroup actions. The specification property for the group
action implies that all generators satisfy the specification property (Lemma 2) and also that
the push-forward group action satisfies the specification property (Theorem 3). Moreover,
C1-robust specification implies structural stability (Corollary 10).

A. Strong specification property

The specification property for a continuous map on a compact metric space X was intro-
duced by Bowen8. A continuous map f : X → X satisfies the specification property if for
any δ > 0 there exists an integer p(δ) ≥ 1 such that the following holds: for every k ≥ 1,
any points x1, . . . , xk, and any sequence of positive integers n1, . . . , nk and p1, . . . , pk with
pi ≥ p(δ) there exists a point x in X such that

d
(
f j(x), f j(x1)

)
≤ δ, ∀ 0 ≤ j ≤ n1

and

d
(
f j+n1+p1+···+ni−1+pi−1(x) , f j(xi)

)
≤ δ
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for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni. This property means that pieces of orbits of f can
be δ-shadowed by a individual orbit provided that the time lag between each shadowing is
larger than some prefixed time p(δ).

The notion of specification was extended to the context of continuous Zd-actions on
a compact metric space X by Ruelle motivated by statistical mechanics. Let (Zd,+) be
endowed with the distance dZd(a, b) =

∑p
i=1 |ai−bi|. Following 33, the group action Zd×X →

X satisfies the specification property if for any δ > 0 there exists p(δ) > 0 such that for any
finite families (Λi)i∈I , (xi)i∈I satisfying if i 6= j, the distance of Λi, Λj (as subsets of Zd)
is > p(δ), there is x ∈ X such that d(mix,mixi) < δ, for all i ∈ I, and all mi ∈ Λi. This
notion clearly extends to group actions associated to finitely generated abelian groups.

Specification property for groups and its generators

In this article we shall address the specification properties and thermodynamical formal-
ism to deal both with finitely generated group and semigroup actions. For simplicity, we
shall state our results in the more general context of semigroup actions whenever the results
do not require the existence of inverse elements. More precisely, given a finitely generated
semigroup (G, ◦) with a finite set of generators G1 = {id, g1, g2, . . . , gm} one can write
G =

⋃
n∈N0

Gn where G0 = id and

g ∈ Gn if and only if g = gin . . . gi2gi1 with gij ∈ G1 (2)

(where we use gj gi instead of gj ◦ gi for notational simplicity). If, in addition, the elements
of G1 are invertible, the finitely generated group (G, ◦) is defined by G =

⋃
n∈N0

Gn where

G0 = id, G1 = {id, g±1 , g
±
2 , . . . , g

±
m} and the elements g ∈ Gn are defined by (2). In both

settings, Gn consists of those group elements which are concatenations of at most n elements
of G1. Since id ∈ Gn then (Gn)n∈N defines an increasing family of subsets of G. Moreover,
G is a finite semigroup if and only if Gn is empty for every n larger than the cardinality of
the group. Given a semigroup G we say g ∈ G has finite order if there exists n ≥ 1 so that
gn = id. If the later property does not hold then an element g ∈ G is said to have infinite
order. We say that g = gin . . . gi1 is reduced if it is the smaller concatenations of elements of
G1 which generates g. Denote by G∗1 = G1 \ {id} and G∗n = {g = gin . . . gi2gi1 : gij ∈ G∗1}.
Using the coding function ι (recall (1)) observe G∗n = ι({in . . . i1 : ij ∈ {1, . . . , k}).

Motivated by applications by actions of semigroups we first introduce some generalizations
of the previous specification property for group actions. Let (G, ◦) be a finitely generated
group of maps on a compact metric space X endowed with the distance dG(h, g) = |h−1g|,
for h, g ∈ G. It is not difficult to check that it is a metric in the group G and that
dG(h, g) = n if and only if there exists g

n
∈ Gn so that g = h g

n
. We are unaware of a

natural notion of metric for semigroups. The following notion extends of the specification
property introduced by33 to more general group actions.

Definition 1. Let G be a finitely generated group, X be a compact metric space and let
T : G×X → X be a continuous action. We say that the group action T has the specification
property if for any δ > 0 there exists p(δ) > 0 such that for any finite families (Λi)i∈I ,
(xi)i∈I so that the dG(Λi,Λj) > p(δ) for every i 6= j, then there is x ∈ X such that
d(gix, gixi) < δ for every i ∈ I and gi ∈ Λi.

The later notion implies on a strong topological indecomposability of the group action.
Given a continuous action T : G×X → X we say that T is topologically transitive if there
exists a point x ∈ X such that the orbit OG(x) := {g(x) : g ∈ G} is dense in X. We say
that T is topologically mixing if for any open sets A,B in X there exists N ≥ 1 such that
for any n ≥ N there is g ∈ G with g ∈ G∗n satisfying g(A) ∩ B 6= ∅. It is easy to check
that any continuous action with the specification property is topologically mixing, hence
topologically transitive. For a survey on several mixing properties for group actions we refer
the reader to the survey13 and references therein.
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Given a continuous action T : G ×X → X of a group G on a compact metric space X
we denote, by some abuse of notation, g : X → X to be the continuous map x 7→ T (g, x).
Given g ∈ G we say that x ∈ X is a fixed point for g if g(x) = x and use the notation
x ∈ Fix(g). We say that x ∈ M is a periodic point of period n if there exists g

n
∈ Gn so

that g
n
(x) = x. In other words, x ∈

⋃
g
n
∈Gn Fix(g

n
). We let Per(Gn) denote the set of

periodic points of period n and set Per(G) =
⋃
n≥1 Per(Gn). If the tracing orbit in the

specification property can be chosen periodic we will say that the action satisfies the periodic
specification property. It is not hard to check that an invertible transformation f : X → X
satisfies the specification property if and only if the group action on X associated to the
group G = {fn : n ∈ Z} (isomorphic to Z) satisfies the specification property.

The next lemma asserts that this specification property for group actions implies all
generators to satisfy the corresponding property.

Lemma 2. Let G be a finitely generated with generators G1 = {g±1 , g
±
2 , . . . , g

±
k }. If the

group action T : G × X → X satisfies the specification property then every g ∈ G1 with
infinite order has the specification property.

Proof. Let δ > 0 be fixed and let p(δ) > 0 be given by the specification property for the
group action T . Take arbitrary k ≥ 1, points x1, . . . , xk, and positive integers n1, . . . , nk
and p1, . . . , pk with pi ≥ p(δ). Since g ∈ G1 is a generator then for any i = 1 . . . k the set

Λi =
{
gj :

i−1∑
s=0

(ps + ns) ≤ j ≤ ni +

i−1∑
s=0

(ps + ns)
}

is finite and connected (assume n0 = p0 = 0). Moreover, since g has infinite order it is

not hard to check that dG(Λi,Λj) ≥ p(δ) for any i 6= j. Let x̄j = g−
∑j−1
s=0 ps+ns(xj), for

1 ≤ j ≤ k. Thus, by the specification property there exists a point x ∈ X such that
d(hx, hx̄i) < δ, for all i = 1 . . . k and all h ∈ Λi which are reduced in this case to

d
(
gj(x), gj(x1)

)
≤ δ, ∀ 0 ≤ j ≤ n1

and

d
(
gj+n1+p1+···+ni−1+pi−1(x) , gj(xi)

)
≤ δ

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni. This proves that the map g has the specification
property and finishes the proof of the lemma.

Let us mention that the existence of elements of generators of finite order is not an
obstruction for the group action to have the specification (e.g. the Z2-action on T2 = R2/Z2

whose generators are a hyperbolic automorphism and the reflection on the real axis). We
refer the reader to Section V for a simple example of a Z2-action for which the converse
implication is not necessarily true.

The push-forward group action

Given a compact metric space X let P(X) denote the space of probability measures on
X, endowed with the weak∗-topology. It is well known that P(X) with the weak∗ topology
is a compact set. We recall that the weak∗-topology in P(X) is metrizable and a metric that
generates the topology can be defined as follows. Given a countable dense set of continuous
functions (φk)k≥1 in C(X) and µ, ν ∈ P(X) define

dP(µ, ν) =
∑
k≥1

1

2k‖φk‖

∣∣∣∣∫ φk dµ−
∫
φk dν

∣∣∣∣ .
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For a continuous map f : X → X, the space of f -invariant probability measures correspond
to the fixed points of the push-forward map f] : P(X)→ P(X), which is a continuous map.
For that reason the push-forward f] reflects the ergodic theoretical aspects of f . Moreover,
the dynamics of f is embedded in the one of f] since it corresponds to the restriction of f]
to the space {δx : x ∈ X} ⊂ P(X) of Dirac measures on X. This motivates the study of
specification properties for the group action of the push-forward maps.

Given a finitely generated group G and a continuous group action T : G×X → X let us
denote by T] : G×P(X)→ P(X) denote the group action defined by g · ν = T (g, ·)] ν. It is
natural to ask wether the specification property can be inherited from this duality relation.

Theorem 3. Let G be a finitely generated group and T : G × X → X be a continuous
group action satisfying the specification property. Then the group action T] : G× P(X)→
P(X) satisfies the specification property.

The following lemma will play an instrumental role in the proof of the theorem.

Lemma 4. Given probability measures µ1, ..., µk ∈ P(X) and δ > 0, there are N ∈ N and

points (xi1, ..., x
i
N ) ∈ XN such that the probabilities µ′i = 1

N

∑N
j=1 δxij satisfy d(µi, µ

′
i) < δ

for 1 ≤ i ≤ k.

Proof. It is well known that the finitely supported atomic measures are dense in P(X).

Then, for δ > 0, there are µ̄1, ..., µ̄k, with µ̄j =
∑M
j=1 α

j
i δxji

∈ P(X), so that d(µk, µ̄k) < δ/

2. Let pji/q
j
i be a positive rational such that |αji − p

j
i/q

j
i | < δ/10. Let N =

∏M
i,j=1 q

j
i and

N j
k = pjk

∏M
i,j=1,i6=k q

j
i . Notice that |N j

k/N − α
j
k| < δ/10 and

µ′j =
1

N

Nj1∑
i=1

δxj1
+

Nj2∑
i=1

δxj2
+ ...+

Njk∑
i=1

δxjk

 ,

satisfies d(µ′j , µ̄j) < δ/2, and by triangular inequality, d(µj , µ
′
j) < δ.

Proof of the Theorem 3. Assume that the action T : G × X → X has the specification
property. Clearly, if T satisfies the specification property then for any N ≥ 1 the contin-
uous action T (N) : G × XN → XN on the product space XN endowed with the distance
dN ((xi)i, (yi)i) = max1≤i≤N d(xi, yi) and given by g·(x1, . . . , xN ) = (gx1, . . . , gxN ) also sat-
isfies the specification. In fact, for any δ > 0 just take p(δ) > 0 as given by the specification
property for T .

Let us proceed with the proof of the theorem. Take δ > 0 and let p(δ/2) be given by
the specification property. Take µ1, ..., µk ∈ P(X) and Λ1, . . . ,Λk finite subsets of G with

d(Λi,Λj) > p(δ/2). Let µ′i = 1
N

∑N
j=1 δxij , such that d(gµ′i, gµi) < δ/2 for all g ∈ Λi. By

considering the finite sequence (xi1, ..., x
i
N )ki=1 ⊂ XN and the sets Λ1, ..Λk, there exists a

point (x1, ..., xN ) ∈ XN in the product space such that

d(g · (x1, ..., xN ), g · (xi1, ..., xiN )) <
δ

2
for all g ∈ Λi.

It implies that the probability measure µ = 1
N

∑N
j=1 δxj satisfies

d(g · µi, g · µ) ≤ d(g · µ′i, g · µ) + d(g · µ′i, g · µi) < δ, for all g ∈ Λi.

This completes the proof of the theorem.

The converse implication in the previous theorem is not immediate. In fact, given the
specification property for T] and any specified pieces of orbit by T] it is not clear that this
can be shadowed by the T]-orbit of a Dirac probability measure δx. Nevertheless this is
indeed the case for the dynamics of continuous interval maps.
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Corollary 5. Let f be a continuous interval map. Then f satisfies the specification prop-
erty if and only if f] satisfies the specification property.

Proof. It follows from Theorem 3 that the specification property for f implies the specifica-
tion property for f], and so we are reduced to prove the other implication. First we observe
that the specification property implies the topologically mixing one. By2, f is topologically
mixing if and only if f] is topologically mixing. Moreover, Blokh7 proved that any contin-
uous topologically mixing interval map satisfies the specification property, thus these are
equivalent properties for continuous interval maps. This proves the corollary.

It is not clear to us if7 can be extended to group actions, and so the previous equivalence
does not have immediate counterpart for group actions of continuous interval maps.

B. Orbital specification properties

In this subsection we introduce weaker notions of specification. In opposition to the
notion introduced in Definition 1, which takes into account the existence of a metric in
the group, the following orbital specification properties are most suitable for semigroups
actions. A first problem to define orbital specification properties is that group elements
g ∈ G may have different representations as concatenation of the generators. For that
reason one should explicitly mention what is the ‘path’, or concatenation of elements, that
one is interested in tracing.

Definition 6. We say that the continuous semigroup action T : G × X → X associated
to the finitely generated semigroup G satisfies the strong orbital specification property if
for any δ > 0 there exists p(δ) > 0 such that for any hpj ∈ G∗pj (with pj ≥ p(δ) for

1 ≤ j ≤ k) any points x1, . . . , xk ∈ X and any natural numbers n1, . . . , nk, any semi-
group elements g

nj ,j
= ginj ,j . . . gi2,j gi1,j ∈ Gnj (j = 1 . . . k) there exists x ∈ X so that

d(g
`,1

(x) , g
`,1

(x1)) < δ for every ` = 1 . . . n1 and

d( g
`,j
hpj−1

. . . g
n2,2

hp1 gn1,1
(x) , g

`,j
(xj) ) < δ

for every j = 2 . . . k and ` = 1 . . . nj (here g
`,j

:= gi`,j . . . gi1,j).

FIG. 1.

Remark 7. The previous notion demands that every ‘long word’ semigroup element hpj
can be used to shadow the pieces of orbits. Here, ‘long word’ means that the element has
at least one representation that is obtained by concatenation of a large number (≥ pj) of
generators, the identity not included. In the case of finitely generated free semigroups the
representation of every element as a concatenation of generators is unique and it makes
sense to notice that the size |hpj | of an element hpj is well defined and coincides with pj.
However, the later property holds for group actions if and only if X is a unique point, since
in the case that G is a group then id ∈ Gn for every n ≥ 2. This is one of the reasons to
choose G∗n instead of Gn.
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We also introduce a weaker notion of orbital specification for semigroups inspired by some
nonuniform versions for maps.

Definition 8. We say that the continuous semigroup action T : G×X → X associated to
the finitely generated semigroup G satisfies the weak orbital specification property if for any
δ > 0 there exists p(δ) > 0 so that for any p ≥ p(δ), there exists a set G̃p ⊂ G∗p satisfying

limp→∞
]G̃p
]G∗

p
= 1 and for which the following holds: for any hpj ∈ G̃pj with pj ≥ p(δ),

any points x1, . . . , xk ∈ X, any natural numbers n1, . . . , nk and any concatenations g
nj ,j

=

ginj ,j . . . gi2,j gi1,j ∈ Gnj with 1 ≤ j ≤ k there exists x ∈ X so that d(g
`,1

(x) , g
`,1

(x1)) < δ

for every ` = 1 . . . n1 and

d( g
`,j
hpj−1

. . . g
n2,2

hp1 gn1,1
(x) , g

`,j
(xj) ) < δ

for every j = 2 . . . k and ` = 1 . . . nj.

We emphasize that the previous definitions are independent of the set of generators for
G, hence these are properties intrinsic to the semigroup. This definition weakens the later
one by allowing a set of admissible elements (whose proportion increases among all possible
semigroup elements) for the shadowing. It is not hard to check that the later notions do not
depend on the set of generators for the semigroup. Non-uniform versions of the previous
orbital specification properties can be defined in the same spirit as30,31,38,39,42, but we shall
not need or use this fact here. In Section V we provide examples satisfying the orbital
specification property but not the usual specification property. The following proposition
is the counterpart of Theorem 3 for orbital specification properties.

Proposition 9. Let G be a finitely generated group. If a continuous group action T :
G × X → X satisfies the strong (resp. weak) orbital specification property then the push-
forward group action T] : G × P(X) → P(X) satisfies the strong (resp. weak) orbital
specification property.

Proof. Since the proofs of the two claims in the proposition are similar we shall prove
the first one with detail and omit the other. By Lemma 4, it is enough to prove the

proposition for probabilities that lie on the set MN (X) = { 1
N

∑N
`=1 δx` : x` ∈ X}, for any

N ∈ N. Observe that if T satisfies the strong orbital specification property then the same
property holds for the induced action T (N) on the product space XN . Let δ > 0 and take
p(δ) ∈ N given by the strong orbital specification property of the induced action on XN .

Let µ1, ..., µk ∈ MN (X) with µj = 1
N

∑N
l=1 δxjl

and g
nj ,j
∈ Gnj (1 ≤ j ≤ k) be given. If

we consider x̄j = (x1
j , ..., x

N
j ), for any |hpj | = pj ≥ p(δ) there exists x̄ = (x1, ..., xN ) ∈ XN

such that d(g
`,1

(x), g
`,1

(x̄1)) < δ for every ` = 1, ..., n1 and

d(g
`,j
hpj−1

. . . g
n2,2

hp1gn1,1
(x̄), g

`,j
(x̄j)) < δ

for every j = 2, ..., k and ` = 1, ..., nj . Let µ = 1
N

∑N
l=1 δxl . In particular µ satisfies

d(g
`,1
· µ , g

`,1
· µ1) < δ for every ` = 1, ..., n1 and

d(g
`,j
hpj−1

...g
n2,2

hp1gn1,1
· µ , g

`,j
· µj) < δ,

for every j = 2, ..., k and ` = 1, ..., nj , which finishes the proof of the proposition.

C. Specification and hyperbolicity

The relation between specification properties, uniform hyperbolicity and structural sta-
bility has been much studied in the last decades, a concept that we will recall briefly. The
content of this subsection is of independent interest and will not be used later on along
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the paper. Given a C1 diffeomorphism f on a compact Riemannian manifold M and an
f -invariant compact set Λ ⊂M (that is f(Λ) = Λ) we say that Λ is uniformly hyperbolic if
there exists a Df -invariant splitting TΛM = Es ⊕ Eu and constants C > 0, 0 < λ < 1 so
that ‖Dfn(x) |Esx ‖ ≤ Cλn and ‖(Dfn(x) |Eux )−1‖ ≤ Cλn for every x ∈ Λ and n ≥ 1. If
Λ = M is a hyperbolic set for f then f is called an Anosov diffeomorphism.

Originally the notion of specification was introduced by Bowen8 for uniformly hyperbolic
dynamics but fails dramatically in the complement of uniform hyperbolicity (even partially
hyperbolic dynamical systems with period points of different index do not satisfy the specifi-
cation property, see40,41 for more details). On the other hand Sakai, Sumi and Yamamoto34

proved that if the specification property holds in a C1-open set of diffeomorphisms then the
dynamical systems are Anosov. It is well know that every C1 Anosov diffeomorphism f is
structurally stable, that is, there exists a C1-open neighborhood U of f in Diff1(M) so that
for every g ∈ U there is an homeomorphism hg : M → M satisfying g ◦ hg = hg ◦ f . Thus
the C1-robust specification implies rigidity of the underlying dynamical systems.

The previous results can be extended for finitely generated group actions acting on a
compact Riemannian manifold M in a more or less direct way as we now describe. Let
G be a finitely generated subgroup of Diff1(M) with generators G1 = {g±1 , . . . , g

±
k }. We

will say that the group action G ×M → M is structurally stable if all the generators are
structurally stable. In other words, there are C1-neighborhoods Ui of the generators gi
(1 ≤ i ≤ k) such that for any choice g̃i ∈ Ui there exists a homeomorphism hi such that
g̃i◦hi = hi◦gi. In the case that G is abelian one can require the conjugacies to coincide (c.f.
definition of structural stability by Sad24). We say that the group action T : G×M →M
satisfies the C1-robust specification property if there exists a C1-neighborhood V of T such
that any C1-action T̃ ∈ V satisfies the specification property. As a byproduct of the previous
results we deduce the following consequence:

Corollary 10. Let G be a finitely generated subgroup of Diff1(M) such that group action
T : G×M → M satisfies the C1-robust specification property. Then every generator is an
Anosov diffeomorphism and the group action is structurally stable.

Proof. Since the group action T : G×M →M satisfies the C1-robust specification property
there exists a C1-neighborhood V of T such that any C1-action T̃ ∈ V satisfies the specifica-
tion property. Moreover, from Lemma 2, any such T̃ can be identified with a group action
associated to a subgroup G̃ of Diff1(M) whose generators G̃1 = {g̃±1 , . . . , g̃

±
k } satisfy the

specification property. This proves that the generators gi ∈ Diff1(M) satisfy the C1-robust
specification property and, by34, are Anosov diffeomorphisms, hence structurally stable.
This proves the corollary.

The previous discussion raises the question of wether the C1-smoothness assumption is
necessary in the previous characterization. For instance, one can ask if a homeomorphism
satisfying the specification property C0-robustly has some form of hyperbolicity. In the
remaining of this subsection we shall address some comments on this problem taking as
a simple model the push-forward dynamics, which is continuous and acts on the compact
metric space of probability measures. Roughly, we will look for some hyperbolicity of the
push-forward dynamics assuming that it has the specification property. Clearly, if f is a
topologically mixing subshift of finite type then it satisfies the specification property and
so does f]. On the other hand, the set of f -invariant measures are (non-hyperbolic) fixed
points for f] and, consequently, this map does not present global hyperbolicity. For that
reason we will focus on the fixed points for the continuous map f] acting on the compact
metric space P(X). Given µ ∈ P(X) and δ > 0 we define the local stable set W s

δ (µ) by

W s
δ (µ) := {η ∈ U : dP(f j] (µ), f j] (η)) < δ for every j ≥ 0}

(the local unstable set Wu
δ (µ) is defined analogously with f] above replaced by f−1

] ). We

say that µ ∈ P(X) is a hyperbolic fixed point for f] if it is a fixed point and there exists
δ > 0 and constants C > 0 and 0 < λ < 1 so that:
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(i) dP(f j] (µ), f j] (η)) < Cλj for every j ≥ 1 and η ∈W s
δ (µ)

(ii) dP(f−j] (µ), f−j] (η)) < Cλj for every j ≥ 1 and η ∈Wu
δ (µ)

We say that the hyperbolic fixed point is of saddle type if both stable and unstable sets are
non-trivial. Since the specification implies the topologically mixing property then we will
mostly be interested in hyperbolic fixed points of saddle type for f]. It follows from the
definition that hyperbolic fixed points for f] are isolated. The following properties follow
from the definitions and Lemma 4:

1. f] is an affine map, that is, f](tη + sµ) = tf](η) + sf](µ) for every t, s ≥ 0 with
t+ s = 1 and η, µ ∈ P(X)

2. µ is a isolated fixed point for f] if and only if the set of f -invariant probability measures
satisfies Mf (X) = {µ} (i.e. f is uniquely ergodic),

3. Mn(X) = { 1
n

∑n
i=1 δxi : xi ∈ X} ⊂ P(X) is a closed f]-invariant set, and

4.
⋃
n≥1Mn(X) is a dense subset of P(X).

Therefore, to analyze the existence of hyperbolic fixed points of saddle type for f] that
satisfies the specification property we are reduced to the case that f is uniquely ergodic.
If f is a contraction on a compact metric space then Banach’s fixed point theorem implies
the existence of a unique fixed point that is a global attractor and, consequently, the Dirac
measure at the attractor is the unique hyperbolic (attractor) fixed point for f], which is
incompatible with transitivity. However, it is nowadays well known that C0-generic maps
have a dense set of periodic points (see e.g.26) and, in particular, C0-generic homeomor-
phisms f are not uniquely ergodic. In conclusion, there is no open set of homeomorphisms
f so that f] has a unique hyperbolic fixed point of saddle type.

III. SPECIFICATION PROPERTIES AND THE ENTROPY OF SEMIGROUP ACTIONS

The notion of entropy is one of the most important in dynamical systems, either as a
topological invariant or as a measure of the chaoticity of the dynamical system. For that
reason several notions of entropy and topological pressure have been introduced for group
actions in an attempt to describe its dynamical characteristics. As discussed in the intro-
duction, some of the previously introduced definitions take into account the growth rate of
the (semi)group, that is, the growth of |Gn| as n increases (see e.g.3 and references therein).
We refer the reader to 16,23 for a detailed description about growth rates for groups and
geometric group theory. In this section we characterize entropy points of semigroup actions
with specification (Theorem 11) and prove that these actions have positive topological en-
tropy (Theorems 14 and 15).

A. Entropy points

Let X be a compact metric space and G be a semigroup. First we shall introduce the
notion of dynamical balls. Given ε > 0 and g := gin . . . gi2 gi1 ∈ Gn we define the dynamical
ball B(x, g, ε) by

B(x, g, ε) := B(x, gin . . . gi2 gi1 , ε)

=
{
y ∈ X : d(g

j
(y), g

j
(x)) ≤ ε, for every 0 ≤ j ≤ n

}
(3)

where, by some abuse of notation, we set g
j

:= gij . . . gi2 gi1 ∈ Gn for every 1 ≤ j ≤ n − 1

and g
0

= id. We also assign a metric dg on X by setting

dg(x1, x2) := dgin ...gi2 gi1 (x1, x2) = max
0≤j≤n

d(g
j
(x1), g

j
(x2)). (4)
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It is important to notice that here both the dynamical ball and metric are adapted to
the underlying concatenation of generators gin . . . gi1 instead of the group element g, since
the later one may have distinct representations. For notational simplicity we shall use the
condensed notations B(x, g, ε) and dg(·, ·) when no confusion is possible. In the case that

g = fn the later notions coincide with the usual notion of dynamical ball Bf (x, n, δ) and
dynamical distance dn(·, ·) with respect to the dynamical system f , respectively.

Now, we recall a notion of topological entropy introduced by Ghys, Langevin, Walczak21

and the notion of entropy point introduced by Bís4. Two points x, y in X are (n, ε)-separated
by G if there exists g ∈ Gn such that d(g(x), g(y)) ≥ ε. Given E ⊂ X, let us denote by
s(n, ε, E) the maximal cardinality of (n, ε)-separated set in E. The limit

h((G,G1), E) = lim
ε→0

lim sup
n→∞

1

n
log s(n, ε, E) (5)

is well defined by monotonicity on ε. The entropy of (G,G1) is defined by the previous
expression with E = X. This definition depends on the generators of G. In this setting of a
semigroup G we define by BG(x, n, ε) :=

⋂
g=gin ...gi1∈Gn

B(x, g, ε) the dynamical ball for the

semigroup G associated to x, length n and size ε centered at x, where the intersection is over
all concatenations that lead to elements in Gn. This corresponds to consider points that are
ε-close along the orbit of x by all the trajectories arising from concatenations of generators.
We say that the finitely generated semigroup (G,G1) acting on a compact metric space X
admits an entropy point x0 if for any open neighbourhood U of x0 the equality

h((G,G1), U) = h((G,G1), X)

holds. Entropy points are those for which local neighborhoods reflect the complexity of
the entire dynamical system. In4, Bís proved remarkably that any finitely generated group
(G,G1) acting on a compact metric space X admits an entropy point x0. We prove that
the orbital specification property for continuous semigroup actions is enough to prove that
all points are entropy points. More precisely,

Theorem 11. Let G ×X → X be a continuous finitely generated semigroup action on
a compact Riemanian manifold X so that every element g ∈ G1 is a local homeomorphism.
If the semigroup action satisfies the weak orbital specification property then every point of
X is an entropy point.

Proof. First we notice that following the proof of4 (Theorem 2.5) ipsis literis we get the
existence of an entropy point x0 ∈ X for any finitely generated semigroup of continuous
maps on X (the proof does not require invertibility). Hence, for any open neighborhood
U of x0 it holds that h((G,G1), X) = h((G,G1), U). Let ζ > 0 be arbitrary and take
ε0 = ε0(ζ) > 0 such that

lim sup
n→∞

1

n
log s(n, ε, U) ≥ h((G,G1), X)− ζ

for every 0 < ε ≤ ε0.
Given any z ∈ X and V any open neighborhood of z we claim that h((G,G1), V ) =

h((G,G1), X). Fix 0 < ε ≤ ε0 let p(ε) ≥ 1 be given by the strong orbital specification
property. Since there are finitely many elements in Gp(ε), finitely many of its concatenations
and the local inverse branches of elements g : X → X are uniformly continuous there exists

a uniform constant Cε > 0 (that tends to zero as ε → 0) so that diam(h−1(B(y, ε))) ≤ Cε
for every h ∈ Gp(ε) and y ∈ X. Take n ≥ 1 arbitrary, let E = {x1, ..., xl} ⊂ U be a maximal

(n, ε, U)-separated set and consider the open set W ⊂ V defined by the set of points y ∈ V
so that d(y, ∂V ) > Cε0 . Assume that 0 < ε� ε0 satisfies ε+ Cε < Cε0 .

Let g := gin . . . gi1 ∈ Gn be fixed. Given a maximal (ε,W )-separated set F = {z1, ..., zm},
by the weak specification property there exists h = hip(ε) . . . hi1 ∈ G∗p( ε4 ) so that for any xi ∈
E and zj ∈ F , there exists yji ∈ B(zj ,

ε
4 ) ∩ h−1(B(xi, g,

ε
4 )). Since diam(h−1(B(xi,

ε
4 ))) ≤
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C ε
4
, this implies that d(h−1(B(xi, g,

ε
4 )), ∂V ) ≥ Cε0 − ε

4 − C ε
4
> 0, provided that ε � ε0.

Thus

h−1
(
BG(xi, n,

ε

4
)
)
⊂ h−1

(
B(xi, g,

ε

4
)
)
⊂ V for every i.

By construction, the dynamical balls (BG(xi, n,
ε
4 ))i=1...l are pairwise disjoint and conse-

quently the number of (n + p( ε4 ), ε4 )-separated points in V is at least s(n, ε, U). In other

words, s
(
n+ p

(
ε
4

)
, ε4 , V

)
≥ s(n, ε, U) and, consequently,

lim sup
n→∞

1

n+ p
(
ε
4

) log s
(
n+ p

(ε
4

)
,
ε

4
, V
)
≥ lim sup

n→∞

1

n+ p
(
ε
4

) log s(n, ε, U)

= lim sup
n→∞

1

n
log s(n, ε, U).

The last inequalities show that h((G,G1), X) ≥ h((G,G1), V ) ≥ h((G,G1), X)− ζ. Since ζ
was chosen arbitrary this completes the proof of the theorem.

The previous result indicates that the specification properties are powerfull tools to prove
the local complexity of semigroup actions. Observe that the previous result clearly applies
for individual transformations.

We now use the notion of topological entropy introduced in11, which measures the mean
cardinality of separated points among possible trajectories generated by the semigroup.
Although one can expect that most finitely generated semigroups are free and so to have
exponential growth (c.f. proof of Proposition 4.5 by Ghys22 implying that for a Baire generic
set of pairs of homeomorphisms the generated group is a free group on two elements) the
notion of average entropy that we consider seems suitable for wider range of semigroups.

Let E ⊂ X be a compact set. Given g = gin . . . gi1 ∈ Gn, we say a set K ⊂ E is (g, n, ε)-
separated set if dg(x1, x2) > ε for any distinct x1, x2 ∈ K. When no confusion is possible

with the notation for the concatenation of semigroup elements, the maximum cardinality
of a (g, ε, n)-separated sets of X will be denoted by s(g, n,E, ε). We now recall the notion

of topological entropy introduced by Bufetov11.

Definition 12. Given a compact set E ⊂ X, we define

htop((G,G1), E) = lim
ε→0

lim sup
n→∞

1

n
logZn((G,G1), E, ε), (6)

where

Zn((G,G1), E, ε) =
1

mn

∑
g∈G∗

n

s(g, n,E, ε), (7)

where the sum is taken over all concatenation g of n-elements of G1 \ {id} and m =
|G1 \ {id}|. The topological entropy htop((G,G1), X) is defined for E = X.

In the case that E = X, for simplicity reasons, we shall use simply the notations s(g, n, ε)
and Zn((G,G1), ε). It is easy to check that htop((G,G1), X) ≤ h((G,G1), X). Moreover,
this notion of topological entropy corresponds to the exponential growth rate of the average
cardinality of maximal separated sets by individual dynamical systems g. This average
is taken over elements that are, roughly, in the “ball of radius n in the semigroup G”,
corresponding to Gn. Notice that for any finite semigroup G, every element g ∈ G has
finite order. In this special case, we notice that every continuous map in the generated
semigroup action has zero topological entropy, which is also coherent with the definition of
entropy presented in (5).

In this context, and similarly to before, we say that x ∈ X is an entropy point if for
any neighborhood U of x one has htop((G,G1), U) = htop((G,G1), X). Our next theorem
asserts that, under the (crucial) strong orbital specification property all points are also
entropy points for this notion of entropy. More precisely,
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Theorem 13. Let G×X → X be a continuous finitely generated semigroup action on a
compact Riemanian manifold X so that every element g ∈ G1 is a local homeomorphism. If
the semigroup action satisfies the strong orbital specification then every point is an entropy
point.

Proof. Given any point z ∈ X and V any open neighborhood of z we claim that htop((G,G1), V ) =
htop((G,G1), X). Let ζ > 0 be arbitrary and take ε0 = ε0(ζ) > 0 such that

lim sup
n→∞

1

n
log s(n, ε, U) ≥ h((G,G1), X)− ζ

for every 0 < ε ≤ ε0. Let p(ε) ≥ 1 be given by the strong orbital specification property.
Since there are finitely many elements in Gp(ε), finitely many of its concatenations and
the local inverse branches of elements g : X → X are uniformly continuous there exists a

uniform constant Cε > 0 (that tends to zero as ε→ 0) so that diam(h−1(B(y, ε))) ≤ Cε for
every h ∈ Gp(ε) and y ∈ X.

Fix h = hip(ε) . . . hi1 ∈ G∗p( ε4 ). Take n ≥ 1 and g := gin . . . gi1 ∈ Gn arbitrary, let

E = {x1, ..., xl} ⊂ X be a maximal (g, n, ε)-separated set and consider the open set W ⊂ V
defined by the set of points y ∈ V so that d(y, ∂V ) > Cε0 . Given a maximal (ε,W )-
separated set F = {z1, ..., zm}, by the specification property, for any xi ∈ E and zj ∈ F
there exists

yji ∈ B(zj ,
ε

4
) ∩ h−1(B(xi, g,

ε

4
)).

Similarly as before we deduce that h−1
(
B(xi, g,

ε
4 )
)
⊂ V for every i. By construction,

the dynamical balls (B(xi, g,
ε
4 ))i=1...l are pairwise disjoint and the points yji are (g h, ε4 , V )-

separated. This proves that

s
(
g h,

ε

4
, V
)
≥ s(g, n,X, ε) s(id, 0, V , ε) ≥ s(g, n,X, ε).

Since the elements g and h were chosen arbitrary then, summing over all possible concate-
nations, we deduce

lim sup
n→∞

1

n+ p
(
ε
4

) log
[ 1

mn+p( ε4 )

∑
g∈G∗

n+p( ε4 )

s
(
g, n+ p

(ε
4

)
, V ,

ε

4

)]
≥ lim sup

n→∞

1

n+ p
(
ε
4

) log
( 1

mn+p( ε4 )

∑
g∈G∗

n

s
(
g, n,X, ε

))
= lim sup

n→∞

1

n
log
( 1

mn

∑
g∈G∗

n

s
(
g, n,X, ε

))
.

The last inequalities show that htop((G,G1), X) ≥ htop((G,G1), V ) ≥ htop((G,G1), X) −
ζ. Since both z ∈ X and ζ > 0 were chosen arbitrary this completes the proof of the
theorem.

B. Positive topological entropy

We now prove that orbital specification properties are enough to guarantee that the
semigroup action has positive topological entropy.

Theorem 14. Let G be a finitely generated semigroup with set of generators G1 and
assume that G ×X → X is a continuous semigroup action on a compact metric space X.
If G×X → X satisfies the strong orbital specification property then htop((G,G1), X) > 0.
In consequence, h((G,G1), X) > 0.
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Proof. Since the expression in the right hand side of (6) is increasing as ε → 0 then it is
enough to prove that there exists ε > 0 small so that

lim sup
n→∞

1

n
log

1

mn

∑
g∈G∗

n

s(g, n, ε) > 0.

Let ε > 0 be small and fixed so that there are at least two distinct 2ε-separated points
x1, x2 ∈ X. Take p( ε2 ) ≥ 1 given by the strong orbital specification property. Taking
g
n1,1

= g
n2,2

= id and h = hp( ε2 ) . . . h2 h1 ∈ G∗p( ε2 ) there are xi,j ∈ B(xi,
ε
2 ), with i, j ∈

{1, 2}, such that h(xi,j) ∈ B(xj ,
ε
2 ). In particular it follows that s(h, p( ε2 ), ε) ≥ 22.

By a similar argument, given g := gin . . . gi2gi1 ∈ Gn with n = k.p( ε2 ), it can be written
as a concatenation of k elements in Gp( ε2 ). In other words, g = hk . . . h1 with hi ∈ Gp( ε2 )

and repeating the previous reasoning it follows that s(g, n, ε) ≥ 2k. Thus,

lim sup
n→∞

1

n
logZn((G,G1), ε) ≥ lim sup

k→∞

1

k p( ε2 )
log

(
1

mk p( ε2 )

∑
|g|=k p( ε2 )

s(g, k p(
ε

2
), ε)

)

≥ 1

p( ε2 )
log 2.

This proves that the entropy is positive and finishes the proof of the theorem.

Let us observe that in19 the author obtained a lower bound for the topological entropy
of C1-maps on smooth orientable manifolds. Here we require continuity of the semigroup
action and a specification property (which most likely can be weakened) for deducing that
topological entropy is strictly positive. One could expect that the weak orbital specification
property could imply the semigroup action to have positive entropy. In fact this is the case
whenever the semigroup satisfies additional conditions on the growth rate which hold e.g.
for free semigroups.

Theorem 15. Assume that G is a finitely generated semigroup and that the continuous
action G × X → X on a compact metric space X satisfies the weak orbital specification
property with

(H) lim sup
p→∞

|G∗p \ G̃p|
mγp

< 1 for every 0 < γ < 1.

Then the semigroup action G×X → X has positive topological entropy.

In Subsection V we give some examples of semigroups combining circle expanding maps
and rotations that satisfies the weak orbital specification property and for which |G∗p \ G̃p|
is finite, hence (H) holds.

Proof of Theorem 15. Given ε > 0, let p(ε) ≥ 1 be given by the specification property. For

any p ≥ p(ε) let G̃p ⊂ G∗p be given by the weak orbital specification property. Take n = kp
with p ≥ p( ε2 ) and assume that (H) holds.

For any g ∈ G∗n one can write it as a concatenation of k elements in G∗p, that is, g =
hk . . . h1 with hi ∈ G∗p. If this is the case, given 0 < γ < 1 we will say that g = hk . . . h1 ∈ G∗n
is γ-acceptable if ]{0 ≤ j ≤ k : hj ∈ G̃p} > γk. Notice that

]{g = hk . . . h1 ∈ Gkp : g not γ-acceptable}

≤
k∑

l≥[γk]

]{g ∈ Gkp : ]{0 ≤ j ≤ k : hj ∈ Gp\G̃p} = l}.

In consequence,
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]{g = hk . . . h1 ∈ G∗kp : g not γ-acceptable}

≤
k∑

l≥[γk]

]{g ∈ G∗kp : ]{0 ≤ j ≤ k : hj ∈ G∗p\G̃p} = l}.

In consequence,

]{g ∈ G∗kp : g is not γ-acceptable}
mkp

≤

k∑
l≥[γk]

(
k
l

)
|G∗p|k−l|G∗p\G̃p|l

mkp

≤ k

(
k

[γk]

)
m(1−γ)kp|G∗p\G̃p|k

mkp

= k

(
k

[γk]

)( |G∗p\G̃p|
mγp

)k
. (8)

By assumption (H), given 0 < γ0 < 1 let 0 < δ � log 2 be small so that lim supp→∞
|G∗
p\G̃p|
mγ0p <

e−2δ < 1. Then by monotonicity of the later limsup in γ, it is clear that

lim sup
p→∞

|G∗p\G̃p|
mγp

< e−2δ < 1

for every γ ∈ (γ0, 1). Up to consider larger γ sufficiently close to 1 so that k

(
k

[γk]

)
≤ eδk

for every k large. The later implies that

]{g ∈ G∗kp : g is not γ-acceptable}
mkp

. eδk
( |G∗p\G̃p|

mγp

)k
. e−δk

which decreases exponentially fast in k (provided that p is large enough). Moreover, given
p� p( ε2 ) one can proceed as in the proof of the previous theorem and prove that s(g, kp, ε) ≥
2γk for any γ-admissible g ∈ G∗kp. Consequently,

lim sup
n→∞

1

n
logZn((G,G1), ε) ≥ lim sup

k→∞

1

k p( ε2 )
log
( ]{g ∈ G∗kp : g is γ-acceptable}

mkp( ε2 )
2γk
)

≥ 1

p( ε2 )
log 2γ + lim sup

k→∞

1

k p( ε2 )
log
(
1− e−δk

)
≥ γ

p( ε2 )
log 2− δ

p( ε2 )

which is strictly positive, by the choice of δ and γ. This proves the theorem.

IV. THERMODYNAMICS OF EXPANSIVE SEMIGROUP ACTIONS WITH
SPECIFICATION

In this section we study thermodynamical properties of positively expansive semigroup
actions satisfying specification and also semigroups of uniformly expanding maps. First
we prove that semigroups of expanding maps satisfy the orbital specification properties
(Theorems 16). Then we obtain conditions for the convergence of topological pressure
(Theorem 25). Finally we prove a strong regularity of the topological pressure function
(Theorem 27) and prove that topological entropy is a lower bound for the exponential
growth rate of periodic points (Theorem 28).
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A. Semigroup of expanding maps and specification

Throughout this subsection we shall assume that X is a compact Riemannian manifold.
We say that a C1-local diffeomorphism f : M → M is an expanding map if there are
constants C > 0 and 0 < λ < 1 such that ‖(Dfn(x))−1‖ ≤ Cλn for every n ≥ 1 and x ∈ X.

Theorem 16. Let G1 = {g1, g2, . . . , gk} be a finite set of expanding maps and let G be
the generated semigroup. Then G satisfies the strong orbital specification property.

The following two lemmas will be instrumental in the proof of Theorem 16.

Lemma 17. Let g1, . . . , gk be C1-expanding maps on the compact manifold X. There
exists δ0 > 0 so that g(B(x, g, δ)) = B(g(x), δ) for any 0 < δ ≤ δ0, any x ∈ X and any
g ∈ G.

Proof. Let di = deg(gi) be the degree of the map gi. Since gi is a local diffeomorphism there
exists δ > 0 (depending on gi) so that for every x ∈ X setting g−1

i (x) = {xi,1, . . . , xi,di}
there are di well defined inverse branches g−1

i,j : B(x, δ)→ Vxi,j onto an open neighborhood
of xi,j . Since there are finitely many maps gi there exists a uniform constant δ0 > 0 so
that all inverse branches for gi are defined in balls of radius δ0. Furthermore, since all gi
are uniformly expanding all inverse branches are λ-contracting for some uniform 0 < λ < 1,
meaning that d( g−1

i,j (y), g−1
i,j (z) ) ≤ λ d(y, z) for any x ∈ X, any y, z ∈ B(x, δ0) and

i = 1 . . . k. In particular g−1
i,j (B(x, δ0)) ⊂ B(xi,j , δ0) and so

Vxi,j = {y ∈ X : d(y, xi,j) < δ0 & d(gi(y), gi(xi,j)) < δ0} = Bgi(xi,j , 1, δ0).

Using this argument recursively, every g
j

= gij . . . gi2 gi1 ∈ Gj is a contraction and we get

that the dynamical ball B(x, g, δ) =
⋂n
j=0 g

−1
j

(B(g
j
(x), δ)) (for 0 < δ < δ0) is mapped

diffeomorphically by g onto B(g(x), δ), proving the lemma.

Lemma 18. Let g1, . . . , gk be C1-expanding maps on the compact manifold X. For any
δ > 0 there exists N = N(δ) ∈ N so that g

N
(B(x, δ)) = X for every x ∈ X and every

g
N
∈ G∗N .

Proof. There exists a uniform 0 < λ < 1 so that all inverse branches for gi are λ-contracting
for any i. Fix δ > 0. Using the compactness of X it is enough to prove that for any x ∈ X
there exists N ≥ 1 so that g

N
(B(x, δ)) = X for every g

N
∈ G∗N . Take N = N(δ) ≥ 1

be large and such that λN (1 + diamX) < δ. Let g
N
∈ G∗N be arbitrary and assume, by

contradiction, that g
N

(B(x, δ)) 6= X. Then there exists a curve γN with diameter at most

diamX + 1 connecting the points x and y ∈ X \ g
N

(B(x, δ)). Consider a covering of γN
by balls of radius δ and consider γ the image of γN by the inverse branches, such that
γ connects x to some point z 6∈ B(x, δ) so that g

N
(z) = y. Using that y 6∈ g

N
(B(x, δ))

one gets that z 6∈ B(x, δ). Since g
N

is a λN -contraction then δ < d(x, z) ≤ length(γ) ≤
λN (1 + diamX) < δ, which is a contradiction. Thus the lemma follows.

Proof of Theorem 16. The proof of the theorem follows from the previous lemmas. In fact,
let δ > 0 be fixed and consider x1, x2, . . . , xk ∈ X, natural numbers n1, n2, . . . , nk and group
elements g

nj ,j
= ginj ,j . . . gi2,j gi1,j ∈ Gnj (j = 1 . . . k). By Lemma 17, there exists ε0 such

that for ε ≤ ε0

g
nj

(B(xj , gnj
, ε)) = B(g

nj
(xj), ε), ∀1 ≤ j ≤ k.

We may assume without loss of generality that δ < ε0. Let p(δ) = N(δ) be given by
Lemma 18. Given p1, . . . , pk ≥ p(δ), for hpj ∈ G∗pj we have that hpi(B(g

ni
(xi), δ)) =

X. It implies that given x̄k ∈ B(xk, gnk
, δ), one has x̄k = hpk−1

(x̄k−1), with x̄k−1 ∈
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B(g
nk−1

(xk−1, ε)), and then x̄k = g
nk−1

hpk−1
(x̄k−2), for some x̄k−2 ∈ B(xk−1, gnk−1

, ε).

By induction, there exists x ∈ B(x1, gn1
, ε), such that

g
`,j
hpj−1

. . . g
n2,2

hp1 gn1,1
(x) ∈ B(xj , g`,j , ε)

for every j = 2 . . . k and ` = 1 . . . nj . This completes the proof of the theorem.

For completeness, let us mention that the results in this subsection hold also for general
topologically mixing distance expanding maps on compact metric spaces (X, d). Recall f is a
distance expanding map if there are δ > 0 and 0 < λ < 1 so that d(f(x), f(y)) ≥ λ−1d(x, y)
for every d(x, y) < δ. Our motivation to focus on smooth maps comes from the fact free
semigroups can be constructed and shown to be robust in this context (c.f. Section V).

B. Convergence and regularity of entropy and the pressure function

In what follows we shall introduce a notion of topological pressure. For notational sim-
plicity, given g ∈ Gn and U ⊂ X we will use the notation Sgϕ(x) =

∑n−1
i=0 ϕ(g

i
(x)) and

Sgϕ(U) = supx∈U Sgϕ(x).

Definition 19. For any continuous observable ϕ ∈ C(X) we define the topological pres-
sure of (G,G1) with respect to ϕ by

Ptop((G,G1), ϕ,X) := lim
ε→0

lim sup
n→∞

1

n
logZn((G,G1), ϕ, ε), (9)

where

Zn((G,G1), ϕ, ε) =
1

mn

∑
g∈G∗

n

sup
E

{∑
x∈E

e
∑n−1
i=0 ϕ(g

i
(x))

}
(10)

and the supremum is taken over all sets E = Eg,n,ε that are (g, n, ε)-separated.

Observe that in the case that G has only one generator f then |Gn| = |{fn}| = 1
and Ptop((G,G1), ϕ) coincides with the classical pressure Ptop(f, ϕ). The case that the
potential is constant to zero corresponds to the notion of topological entropy introduced in
Definition 12. We proceed to prove that the topological pressure of expansive semigroup
actions with the specification property can be computed as a limit. For that purpose
we provide an alternative formula to compute the topological pressure using open covers.
Given ε > 0, n ∈ N and g ∈ Gn, we say that an open cover U of X is an (g, n, ε)-cover
if any open set U ∈ U has dg-diameter smaller than ε, where dg is the metric introduced

in (4). Let cov(g, n, ε) be the minimum cardinality of a (g, n, ε)-cover of X. To obtain
a characterization of the topological pressure using open covers of the space we need the
continuous potential to satisfy a regularity condition. Given ε > 0 and g := gin . . . gi1 ∈ G
we define the variation of Sgϕ in dynamical balls of radius ε by

V arg(ϕ, ε) = sup
dg(x,y)<ε

|Sgϕ(x)− Sgϕ(y)|.

We say that ϕ has bounded distortion property (in dynamical balls of radius ε) if there exists
C > 0 so that

sup
g∈G

sup
x∈X

V arg(ϕ, ε) ≤ C.

For short we denote by BD(ε) the space of continuous potentials that have bounded dis-
tortion in dynamical balls of radius ε and we say that ϕ has bounded distortion property
if there exists ε > 0 so that ϕ has bounded distortion on dynamical balls of radius ε. In
what follows we prove that Hölder potentials have bounded distortion for semigroups of
expanding maps.
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Lemma 20. Let G be a finitely generated semigroup of expanding maps on a compact
metric space X with generators G1 = {g1, . . . , gm}. Then any Hölder continuous observable
ϕ : M → R satisfies the bounded distortion property.

Proof. Let δ0 > 0 and 0 < λ < 1 be chosen as in the proof of the previous lemma and
assume that ϕ is (K,α)-Hölder. Given any 0 < ε < δ0/2, any g = gin . . . gi1 ∈ Gn and
x, y ∈ X with dg(x, y) < ε,

|Sgϕ(x)− Sgϕ(y)| = |
n−1∑
i=0

ϕ(g
i
(x))−

n−1∑
i=0

ϕ(g
i
(y))| ≤

n−1∑
i=0

|ϕ(g
i
(x))− ϕ(g

i
(y))|

≤
n−1∑
i=0

Kd(g
i
(x), g

i
(y))α ≤

n−1∑
i=0

Kλ(n−i)αd(g
n
(x), g

n
(y))α

≤ K

1− λα
εα.

This proves the lemma.

Proposition 21. Let ϕ : X → R be a continuous map satisfying the bounded distortion
condition. Then the topological pressure Ptop((G,G1), ϕ,X) with respect to the potential ϕ
satisfies

Ptop((G,G1), ϕ,X) = lim
ε→0

lim sup
n→∞

1

n
log

 1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

eSgϕ(U)

 ,

where the infimum is taken over all open covers U of X such that U is a (g, n, ε)-open cover.

Proof. Although the proof of this proposition follows a classical argument we include it here
for completeness. Take ε > 0, n ∈ N and g ∈ Gn. To simplify the notation we denote

Cn((G,G1), ϕ, ε) =
1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

eSgϕ(U)

where the infimum are taken over all (g, n, ε)-open covers and let Zn((G,G1), ϕ, ε) be
given by equation (10). Given a (g, n, ε)-maximal separated set E it follows that U =
{B(x, g, ε)}x∈E is a (g, n, 2ε)-open cover. By the bounded distortion assumption, Sgϕ(B(x, g, ε)) =

supz∈B(x,g,ε) Sgϕ(z) ≤ Sgϕ(x) + C for some constant C > 0, depending only on ε. Conse-

quently,

lim sup
n→∞

1

n
logCn((G,G1), ϕ, 2ε) ≤ lim sup

n→∞

1

n
logZn((G,G1), ϕ, ε). (11)

On the other hand, if U is (g, n, ε)-open cover, for any (g, n, ε)-separated set E ⊂ X we
have that ]E ≤ ]U , since the diameter of any U ∈ U in the metric dg is less than ε. By the

bounded distortion condition we get that

lim sup
n→∞

1

n
logZn((G,G1), ϕ, ε) ≤ lim sup

n→∞

1

n
logCn((G,G1), ϕ, ε). (12)

Now, combining equations (11) and (12) we get that

lim sup
n→∞

1

n
logZn((G,G1), ϕ, ε) ≤ lim sup

n→∞

1

n
logCn((G,G1), ϕ, ε) (13)

≤ lim sup
n→∞

1

n
logZn((G,G1), ϕ,

ε

2
)

and then the result follows.
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In the next lemma we provide a condition under which the topological pressure can be
computed as a limit.

Proposition 22. Let ϕ : X → R be a continuous potential. Given ε > 0, the limit superior

lim sup
n→∞

1

n
log
( 1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

eSgϕ(U)
)

is indeed a limit.

Proof. Since ϕ is continuous then it is bounded from below. Assume without loss of gen-
erality that ϕ is non-negative, otherwise we just consider a translation ϕ + C since it will
affect the lim sup by a translation of C. Given ε > 0, recall that the infimum is taken over
all (g, n, ε)-open covers U of X. For any element g = h k ∈ G∗`+n with h ∈ G`, k ∈ G∗n, and

any (h, n, ε)-cover U and (k, `, ε)-cover V then W := k−1(U)∨V is a (g, `+ n, ε)-cover, and∑
W∈k−1(U)∨V
W=k−1(U)∩V

etSgϕ(W ) ≤
( ∑
V ∈V

etSkϕ(V )
)( ∑

U∈U
etShϕ(U)

)

Taking the infimum over the open covers U and V we deduce that

inf
W

{ ∑
W∈W

etSgϕ(W )
}
≤ inf
V

{ ∑
V ∈V

etSkϕ(V )
}

inf
U

{∑
U∈U

etShϕ(U)
}
.

where the first infimum can be taken over all (g,m + n, ε)-open covers W. Summing over
every elements g = h k ∈ G∗`+n,∑

|g|=`+n

inf
W

{ ∑
W∈W

etSgϕ(W )
}
≤
( ∑
|k|=`

inf
V

∑
V ∈V

etSkϕ(V )
)( ∑
|h|=n

inf
U

∑
U∈U

etShϕ(U)
)
.

Thus, the sequence of real numbers (an)n∈N given by

an = log
( ∑
g∈G∗

n

inf
W

{ ∑
W∈W

etSgϕ(W )
})

is subaditive and {an/n}n∈N is convergent. Since the term 1
n log 1

mn is clearly constant this
completes the proof of the proposition.

From the previous results, the topological pressure can be computed as the limiting
complexity of the group action as the size scale ε approaches zero. In what follows we will
be mostly interested in providing conditions for the topological pressure of group actions
to be computed as a limit at a definite size scale. Let us introduce the necessary notions.
Let X be a compact metric space and G×X → X be a continuous action associated to the
finitely generated semigroup (G,G1).

Definition 23. Given δ∗ > 0, the semigroup action G × X → X is δ∗-expansive if for
every x, y ∈ X there exists k ≥ 1 and g ∈ Gk such that d(g(x), g(y)) > δ∗. The semigroup
action G × X → X is strongly δ∗-expansive if for any γ > 0 and any x, y ∈ X with
d(x, y) ≥ γ there exists k ≥ 1 (depending on γ) such that dg(x, y) > δ∗ for all g ∈ G∗k.

Remark 24. By compactness of the phase space X, a continuous action is strongly δ∗-
expansive satisfies the following equivalent formulation: given γ > 0 and x, y ∈ X with
d(x, y) ≥ γ there exists k0 ≥ 1 (depending on γ) such that dg(x, y) > δ∗ for all g ∈ G∗k and

k ≥ k0.

In what follows we prove that the topological entropy of expansive semigroup actions
can be computed as the topological complexity that is observable at a definite scale. More
precisely,
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Theorem 25. Assume the continuous action of G on the compact metric space X is
strongly δ∗-expansive. Then, for every continuous potential ϕ : X → R satisfying the
bounded distortion condition and every 0 < ε < δ∗

P (ϕ) := Ptop((G,G1), ϕ,X) = lim sup
n→∞

1

n
log

 1

mn

∑
g∈G∗

n

sup
E

∑
x∈E

eSgϕ(x)


where the supremum is taken over all (g, n, ε)-separated sets E ⊂ X.

We just observe, before the proof, that in view of the previous characterization given in
Proposition 21, the same result as above also holds if we consider open covers instead of
separated sets.

Proof of Theorem 25. Since X is compact and ϕ : X → R is continuous we assume, without
loss of generality, that ϕ is non negative. Fix γ and ε with 0 < γ < ε < δ∗. We want to
show that

lim sup
n→∞

1

n
logZn((G,G1), ϕ, γ) ≤ lim sup

n→∞

1

n
logZn((G,G1), ϕ, ε).

The other inequality is clear. By strong δ∗-expansiveness and Remark 24 for any two
distinct points x, y ∈ X with d(x, y) ≥ γ there exists k0 ≥ 1 (depending on γ) so that
dg(x, y) ≥ δ∗ > ε for any g ∈ G∗k and k ≥ k0. Take n ≥ k0 and g ∈ G∗n+k arbitrary and

write g = h2h1 with h1 ∈ G∗n and h2 ∈ G∗k. Given any (h1, n, γ)-separated set E we claim
that the set E is (g, n+k, ε)-separated. In fact, given x, y ∈ E there exists a decomposition
h1 = h1,2 h1,1 ∈ G∗n so that d(h1,1(x), h1,1(y)) > γ. Using that h2 h1,2 ∈

⋃
l≥kG

∗
l and

Remark 24 it follows that dg(x, y) ≥ dh2 h1,2
(h1,1(x), h1,1(y)) > ε proving the claim. Now,

using that ϕ is non-negative,

eSgϕ(x) = eSh2h1ϕ(x) = eSh2ϕ(h1(x))eSh1ϕ(x) ≥ eSh1ϕ(x),

which implies that Zn((G,G1), ϕ, γ) ≤ mkZn((G,G1), ϕ, ε) because

Zn((G,G1), ϕ, γ)=
1

mn

∑
|h1|=n

sup
E

∑
x∈E

eSh1ϕ(x)

≤m
n+k

mn

1

mn+k

∑
g∈G∗

n+k

sup
E

∑
x∈E

eSgϕ(x) =mkZn+k((G,G1), ϕ, ε).

Thus it follows that

lim sup
n→∞

1

n
logZn((G,G1), ϕ, γ) ≤ lim sup

n→∞

1

n+ k
logZn+k((G,G1), ϕ, ε),

as we wanted to prove. This completes the proof of the theorem.

Some comments on our assumptions are in order. It is clear that if some generator for
the group is an expansive map then the group is itself expansive. Clearly, expanding maps
are expansive. Moreover, the semigroup G generated by G1 = {g1, ..., gk} that admits some
expansive generator is clearly expansive. In Lemma 26 below we prove that semigroups of
expanding maps are strongly expansive semigroups.

Lemma 26. Let G be a finitely generated semigroup of expanding maps on a compact
metric space X with generators G1. Then there exists δ∗ > 0 so that G is strongly δ∗-
expansive.
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Proof. Let G1 = {g1, ..., gm} be the set of generators of G. Following the proof of Lemma 17
there are uniform constants δ0 > 0 and 0 < λ < 1 so that all inverse branches g−1

i,j for gi are

defined in balls of radius δ0 and d( g−1
i,j (y), g−1

i,j (z) ) ≤ λ d(y, z). for any x ∈ X, any y, z ∈
B(x, δ0) and i = 1 . . .m. Take δ∗ = δ0/2. Given γ > 0 take k ≥ 1 (depending on γ) so that
λkδ∗ < γ. We claim that for any x, y ∈ X with d(x, y) ≥ γ and g ∈ G∗k we have dg(x, y) >

δ∗. Assume, by contradiction, that there exists g = gik ...gi1 ∈ G∗k with d(g(x), g(y)) ≤
dg(x, y) ≤ δ∗. Then d(gij ...gi1(x), gij ...gi1(y)) ≤ λk−jd(gik ...gi1(x), gik ...gi1(y)) for every

1 ≤ j ≤ k and so d(x, y) ≤ λkd(g(x), g(y)) < γ, which is a contradiction. This finishes the
proof of the lemma.

Theorem 27. Let G be a finitely generated semigroup with generators G1. If the semi-
group action induced by G on the compact metric space X is strongly δ∗-expansive and the
potentials ϕ,ψ : X → R are continuous and satisfy the bounded distortion property then

1. Ptop((G,G1), ϕ+ c,X) = Ptop((G,G1), ϕ,X) + c f or every c ∈ R

2. |Ptop((G,G1), ϕ,X)− Ptop((G,G1), ψ,X)| ≤ ‖ϕ− ψ‖, and

3. the pressure function t 7→ Ptop((G,G1), tϕ,X) is an uniform limit of differentiable
maps.

Moreover, t 7→ Ptop((G,G1), tϕ,X) is differentiable Lebesgue-almost everywhere.

Proof. We start by observing that property (1) follows directly from the definition of the
topological pressure. By hypothesis let ε0 > 0 be so that ϕ,ψ ∈ BD(ε0). On the one hand,
by Theorem 25 together with equation (13) it follows that for any 0 < ε < δ∗,

P (ϕ) := Ptop((G,G1), tϕ,X) = lim sup
n→∞

1

n
log

 1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

etSgϕ(U)


where the infimum is taken over all (g, n, ε)-open covers U . On the other hand, by Propo-
sition 22 the right hand side above is actually a true limit. Thus, for any t ∈ R we have
that

Ptop((G,G1), tϕ,X) = lim
n→∞

1

n
log

 1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

etSgϕ(U)

 , (14)

where the infimum is taken over all (g, n, ε)-covers U for any 0 < ε < min{δ∗, ε0}. It means
that the map t 7→ Ptop((G,G1), tϕ,X) is a pointwise limit of real analytic functions. We
claim that the convergence is indeed uniform. To prove this we will prove that the sequence
of real functions (Pn(tϕ))n≥1 defined by

t 7→ Pn(tϕ) :=
1

n
logCn((G,G1), tϕ, ε)

where

Cn((G,G1), tϕ, ε) =
1

mn

∑
g∈G∗

n

inf
U

∑
U∈U

etSgϕ(U)

is equicontinuous in compact intervals, i.e., given ε > 0 there exists δ > 0 such that if
|t1 − t2| < δ then |Pn(t1ϕ) − Pn(t2ϕ)| < ε, for every n ∈ N. Let ε > 0 be fixed and take
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0 < δ < ε/‖ϕ‖. Given t1, t2 arbitrary with |t1 − t2| < δ it holds that

|Pn(t1ϕ)− Pn(t2ϕ)| = 1

n
log

[∑
g∈G∗

n
infU

{∑
U∈U e

t2Sgϕ(U)
}

∑
g∈G∗

n
infU

{∑
U∈U e

t1Sgϕ(U)
}]

≤ 1

n
log

enδ‖ϕ‖∑g∈G∗
n

infU

{∑
U∈U e

t1Sgϕ(U)
}

∑
g∈G∗

n
infU

{∑
U∈U e

t1Sgϕ(U)
}


= δ‖ϕ‖ < ε.

Hence the sequence is equicontinuous. Since (Pn(tϕ))n∈N converges pointwise, we have that
the sequence converges uniformly on compact intervals and so t 7→ Ptop((G,G1), tϕ,X)
is a continuous function. Furthermore, for any n ∈ N the function t 7→ Pn(ϕ + tψ) is
differentiable and∣∣∣∣dPn(ϕ+ tψ)

dt

∣∣∣∣= 1

Cn((G,G1), tϕ, ε)

1

n

( 1

mn

∑
g∈G∗

n

inf
U

{∑
U∈U

Sgψ(U)eSg(ϕ+tψ)(U)
})

is bounded from above by ‖ψ‖ (here the infimum is taken over all (g, n, ε)-covers U as in
(14)). This proves property (3). Moreover, by the mean value inequality

|Pn(ϕ)− Pn(ψ)| ≤ sup
0≤t≤1

∣∣∣∣dPn(ϕ+ t(ψ − ϕ))

dt

∣∣∣∣ ≤ ‖ϕ− ψ‖.
Taking n → ∞ we get that |Ptop((G,G1), ϕ,X) − Ptop((G,G1), ψ,X)| ≤ ‖ϕ − ψ‖ and so
the pressure function Ptop((G,G1), ·, X) acting on the space of potentials with bounded
distortion is Lipschitz continuous with Lipschitz constant equal to one. This proves prop-
erty (2). The later implies that t 7→ Ptop((G,G1), tϕ,X) is Lebesgue-almost everywhere
differentiable, which concludes the proof of the theorem.

C. Topological entropy and growth rate of periodic points

In the remaining of this section we prove that the topological entropy is a lower bound for
the exponential growth rate of periodic points for semigroup of expanding maps. Clearly
the theorems of the previous section apply to the topological entropy since it corresponds
to the constant to zero potential.

Theorem 28. Let G be the semigroup generated by a set G1 = {g1, . . . , gk} of uniformly
expanding maps on a Riemannian manifold X. Then:

(a) G satisfies the periodic orbital specification property,

(b) periodic points Per(G) are dense in X, and

(c) the mean growth of periodic points is bounded from below as

0 < htop((G,G1), X) ≤ lim sup
n→∞

1

n
log
( 1

mn

∑
g∈G∗

n

]Fix(g)
)
.

Proof. Take n ≥ 1 arbitrary and fixed. It follows from Lemmas 17 and 18 that there exists
δ0 > 0 satisfying: for any 0 < δ ≤ δ0 there exists a uniform N(δ) ≥ 1 so that for any x ∈ X,
any g

n
∈ Gn and g

N
∈ G∗N with N ≥ N(δ) it holds

g
N

(g
n
(B(x, g, δ))) = X.
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Consider δ > 0, x1, x2, . . . , xk ∈ X, natural numbers n1, n2, . . . , nk and group elements
g
nj ,j

= ginj ,j . . . gi2,j gi1,j ∈ Gnj (j = 1 . . . k) be given and let us prove that G satisfies the

periodic orbital specification property, that is, there exists a periodic orbit shadowing the
previously defined pieces of orbit. For that let us define xk+1 = x1 and g

nk+1
= g

1
∈ Gn1

.

By the proof of Theorem 16, there exists p(δ) ≥ 1 so that for any p1, . . . , pk ≥ p(δ), for
hpj ∈ G

∗
pj we have that hpi(B(g

ni
(xi), δ)) = X. Hence, there is a well defined inverse branch

(which we denote by g−1
ni
h−1
pi

for simplicity) so that

g−1
ni
h−1
pi (B(xi+1, gni+1 , δ)) ⊂ B(xi, gni , δ)

and g−1
ni
h−1
pi
|B(xi+1,g,δ) is a contraction. Since, B(xk+1, gnk+1

, δ) = B(x1, gn1
, δ),

g−1
n1
h−1
p1
. . . g−1

nk
h−1
pk

(B(xk+1, gnk+1
, δ)) ⊂ B(x1, gn1

, δ)

and the composition g−1
n1
h−1
p1
. . . g−1

nk
h−1
pk

is a uniform contraction, then there exists a unique

repelling fixed point for hpkgnk
. . . hp1gn1

in the dynamical ball B(x1, gn1
, δ). By construc-

tion, the fixed point for hpkgnk
. . . hp1gn1

shadows the specified pieces of orbits. This proves

that G satisfies the periodic orbital specification property in (a). Clearly (b) is a conse-
quence of the first claim (a).

Now, take g ∈ G∗n and observe that for any maximal (g, n, 2δ)-separated set E, the
dynamical balls {B(x, g, δ) : x ∈ E} form a pairwise disjoint collection. Let p(δ) be given
by the previous periodic orbital specification property. For any arbitrary k ∈ G∗n+p(δ) one

can write k = hg g for g ∈ G∗n and hg ∈ G∗p(δ). Notice that, proceeding as before,

k(B(x, g, δ)) = hg(B(g(x), δ)) = X

for every x ∈ E and so there is a unique fixed point for k on the dynamical ball B(x, g, δ).
This yields Fix(k) ≥ ]E and so

∑
|k|=n+p(δ)

]Fix(k) ≥
∑
|g|=n

]Fix(hg g) ≥
∑
|g|=n

s(g, n, 2δ).

Therefore,

lim sup
n→∞

1

n
log
( 1

mn

∑
|k|=n

]Fix(k)
)

= lim sup
n→∞

1

n
log
( 1

mn+p(δ)

∑
|k|=n+p(δ)

]Fix(k)
)

= lim sup
n→∞

1

n
log
( 1

mn

∑
|k|=n+p(δ)

]Fix(k)
)

≥ lim sup
n→∞

1

n
log
( 1

mn

∑
|g|=n

s(g, n, 2δ)
)
.

Taking δ → 0 in the left hand side the previous inequality and recalling Theorem 14 this
proves (c) and finishes the proof of the theorem.

Some comments are in order. Firstly it is not hard to check that an analogous result
holds for the notion of entropy h((G,G1), X), leading to

h((G,G1), X) ≤ lim sup
n→∞

1

n
log ]Per(Gn).

Secondly, since any expanding map satisfies the periodic specification property then peri-
odic measures are dense in the space of invariant probability measures (see e.g.17 (Propo-
sition 21.8)). Hence, given a finitely generated semigroup of expanding maps G it is clear
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that whenever the set M(G) of probability measures invariant by every element g ∈ G is
non-empty then the set of periodic measures

Pper(G) =
⋃
n≥1

⋃
g∈Gn

{ 1

n

n−1∑
j=0

δg
j
(x) : x ∈ Fix(g)

}
is dense in the set of probability measuresM(G). Finally, weighted versions of the previous
theorem for potentials with bounded distortion are also very likely to hold.

V. APPLICATIONS

In this section we provide some classes of examples of semigroup actions that combine
hyperbolicity and specification properties. We also provide some examples for which while
we compare the notions of topological entropy used here with some others previously in-
troduced and available in the literature, and discuss the relation between entropy, periodic
points and specification properties.

The following example illustrates that in the notion of specification some ‘linear inde-
pendence condition’ on the set of generators must be assumed in order to obtain that the
group has the specification property.

Example 29. Consider the integer valued matrix

A =

(
2 1
1 1

)
, (15)

which induces a linear (topologically mixing) Anosov fA on T2 = R2/Z2 that satisfies the
specification property. Hence, the Z action Z × T2 → T2 given by (n, x) 7→ fnA(x) satisfies
the specification property.

Now, take B = A−2 ∈ SL(2,Z) which also induces a linear Anosov fB on the torus
and satisfies the specification property. Nevertheless, the Z2-action Z2 × T2 → T2 given
by ((m,n), x) 7→ fmA (fnB(x)) = fm−2n

A (x) clearly does not satisfy the specification property
because every element in the (unbounded) subgroup {(2n, n) : n ∈ Z} ⊂ Z2 induces the
identity map. This indicates that generators should be taken in an irreducible way, that is,
that there are n1, ..., nk ∈ Z not all simultaneously zero so that gn1

1 ...gnkk = IdG.

The next modification of the previous example illustrates that the irreducibility of the
generators in the sense that two generators A and B satisfy AmBn 6= Id for all m,n ∈ Z
not simultaneously zero is not the unique obstruction.

Example 30. Let A,B be the two matrices in SL(4,Z) given by

A =

(
A 0
I2 A

)
and B =

(
A 0
0 A

)
, where A =

(
2 1
1 1

)
∈ SL(2,Z),

I2 ∈ M2×2(Z) denotes the identity matrix and 0 ∈ M2×2(Z) is the null matrix. It is not
difficult to see that A and B are hyperbolic matrices (hence the diffeomorphisms induced
by A and B satisfy the specification property), these commute but B 6= Am for all m ∈ Z.
Consider the Z2-action T : Z2 × T4 → T4 of Z2 on the torus T4 defined by ((m,n), x) 7→
AmBn(x). Since the element

A−1B =

(
I2 0
I2 I2

)
does not satisfy the specification property one can deduce from Lemma 2 that this group
action does not satisfy the specification property. Similarly, it is not hard to check that this
group action does not satisfy neither of the orbital specification properties.
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It follows from the discussion on the previous section that C1-robust specification property
implies that the corresponding generators are uniformly hyperbolic and, in particular, the
action is structurally stable. Our twofold purpose in the next example is: (i) to exhibit
broad families of non-hyperbolic smooth maps that satisfy orbital specification properties
although generators do not necessarily have the specification property; (ii) present examples
where the weak orbital specification property holds while the strong orbital property does
not.

Example 31. Let f : S1 → S1 be a C1-expanding map of the circle and Rα : S1 → S1

be the rotation of angle α. Let G be the semigroup generated by G1 = {id, f,Rα}. This
example can be modified for the semigroup G to be free (e.g. by taking a irrational rotation
and an expanding map with trivial centralizer c.f. discussion in the Example 32).

Claim 1: The action induced by the semigroup G on the unit circle S1 does not satisfy the
strong orbital specification property.

Proof of Claim 1. Take δ > 0 and x1, 6= x2 in the circle, n1 = n2 = n ≥ 1 and the maps
g
n1

= fn1 and g
n2

= fn2 . For any p ≥ 1 take hp = Rpα = Rαp the rotation of angle αp.

If n is large then the dynamical balls Bf (x1, n1, δ) and Bf (x2, n2, δ) are disjoint and small.
In particular, there exists p ≥ 1 so that hp(Bf (x1, n1, δ)) ∩Bf (x2, n2, δ) = ∅. In particular

the semigoup action G on S1 does not satisfy the strong specification orbital property.

Claim 2: The action induced by the semigroup G on the unit circle S1 satisfies the weak
orbital specification property.

Proof of Claim 2. Since f is C1-expanding, by the proof of Lemma 17, there exists δ0 > 0
so that for any 0 < δ ≤ δ0, any x ∈ X and any n ∈ N it follows that fn(Bf (x, n, δ)) =
B(fn(x), δ). Moreover, there exists N = N(δ) ≥ 1 so that any ball of radius δ is mapped
onto S1 by fN . We can now prove the claim. Given δ > 0 take p(δ) = N(δ) ≥ 1. For any

p ≥ p(δ) let G̃p ⊂ G∗p denote the set of elements hp ∈ G∗p for which the following holds:
given arbitrary points x1, . . . , xk ∈ X, any positive integers n1, . . . , nk ≥ 1, any elements
g
nj ,j

= ginj ,j . . . gi2,j gi1,j ∈ Gnj and any elements hpj ∈ G̃pj with pj ≥ p(δ) there exists

x ∈ X so that d(g
`,1

(x) , g
`,1

(x1)) < δ for every ` = 1 . . . n1 and

d( g
`,j
hpj−1

. . . g
n2,2

hp1 gn1,1
(x) , g

`,j
(xj) ) < δ

for every j = 2 . . . k and ` = 1 . . . nj . We claim that limp→+∞ |G̃p|/|G∗p| = 1. We notice
that g

nj ,j
(B(x, g

nj ,j
, δ)) = B(g

nj ,j
(x), δ) is a ball of radius δ for any 1 ≤ j ≤ k. So, if

the expanding map is f is combined at least p(δ) times in any way in the words hp we get

hp(B(y, δ)) = S1 for any y which clearly implies that hp ∈ G̃p. Thus for any p ≥ p(δ)

G∗p \ G̃p ⊂
{
hp = hip . . . hi2hi1 ∈ Gp : ]{1 ≤ j ≤ p : hij = f} < p(δ)

}
.

Clearly, for any 0 < γ < 1

|G∗p \ G̃p|
2γp

≤ 2−γp
p(δ)−1∑
k=0

(
p
k

)
≤ p(δ) 2−γp pp(δ) → 0 (16)

as p tends to infinity, which proves our claim.

Since the assumption (H) in Theorem 15 is a direct consequence of the previous equation (16)
then we deduce that this semigroup action has positive topological entropy.

Clearly we can modify the previous strategy to deal with other different kind of semi-
groups with more generators. Our next purpose is to provide an example of a semigroup
with exponential growth that is not a free semigroup but still satisfy the assumptions of
Theorem 27.
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Example 32. Let X = S1 be the circle and consider the expanding maps on S1 given by
g1(x) = 2x ( mod 1), that g2(x) = 3x ( mod 1). It is clear that these maps comute (that
is, g1 ◦ g2 = g2 ◦ g1) and that gk1 6= g`2 for every k, ` ∈ Z+ (since 2 and 3 are relatively
prime). Now, consider another C1-expanding map g3 such that its centralizer Z(g3) is
trivial, meaning

Z(g3) := {h : S1 → S1 expanding : h ◦ g3 = g3 ◦ h} = {g`3 : ` ∈ Z+}.

In particular the subgroup generated by g2 and g1 is disjoint from Z(g3). In other words,
g3 ◦ g`2 ◦ gk1 6= g`2 ◦ gk1 ◦ g3 for every `, k ∈ Z+. The existence of such g3 is garanteed by1. Let
G be the semigroup of expanding maps with generators G1 = {g1, g2, g3}. By construction,

the subgroup G̃ of G generated by G̃1 = {g1, g3} is a free semigroup then

lim
n→∞

1

n
log |Gn| ≥ log 2 > 1

and the semigroup has exponential growth. Since the generators do not have finite order then
any elements g ∈ Gn is a concatenation g = gin . . . gi1 with gij ∈ G1. By commutativity,
all concatenations of j elements g1 and k elements g2 coincide with the expanding map
gj1 g

k
2 and consequently there are exactly n + 1 elements in Gn obtained as concatenations

of the elements g1 and g2. This semigroup has exponential growth and is not abelian but
still satisfies the conditions of Theorem 27 for every Hölder continuous potential ϕ : X → R
and, in particular, the pressure function t 7→ Ptop((G,G1), tϕ,X) is differentiable Lebesgue-
almost everywhere.

In what follows we shall provide a simple example of a Zd-semigroup action where we can
already discuss the relation between the notion of topological entropy that we introduced
in comparison with some of the previous ones. We focus on the case of semigroups of
expanding maps for simplicity of computations while we notice that an example of actions
of total automorphisms as considered in Example 29 could be constructed analogously.

Example 33. Let X = S1 be the circle and the Z3-group action T : Z3×S1 → S1 defined by
((m,n, k), x) 7→ gm1 g

n
2 g

k
3 (x), where g1(x) = 2x ( mod 1), g2(x) = 3x ( mod 1) and g3(x) =

5x ( mod 1) are commuting expanding maps of the circle. By commutativity and the fact
that the numbers 2, 3, 5 are relatively prime it is easy to check that |Gn| = (n+ 1)(n+ 2)/2.
First we shall compute the topological pressure as considered by Bis in3. If s(n, δ) denotes
the number of (n, δ)-separated sets by G the topological entropy in3 is defined by

lim
δ→0

lim sup
n→∞

1

|Gn−1|
log s(n, δ). (17)

In our context, for any δ > 0

lim sup
n→∞

1

|Gn−1|
log s(n, δ) ≤ lim sup

n→∞

2

n2
log(5n) = 0

proving that the entropy in (17) is zero. For the sake of completeness let us mention that it
is remarked in3 that having positive topological entropy with this definition does not depend
on the generators. Ruelle33 considered a slightly different but similar notion of topological
entropy but that does coincide with (17) in this context.

Let us now proceed to compute the notion of topological entropy considered by Ghys,
Langevin, Walczak 21 and Bis4. According to their definition entropy is computed as

lim
δ→0

lim sup
n→∞

1

n
log s(n, δ) = log 5

and it measures the maximal entropy rate in the semigroup. Finally we observe that it fol-
lows from12 that the topological entropy of the semigroup action, according to Definition 12,
in the case the generators are expanding is given by

htop((G,G1), X) = log
(deg g1 + deg g2 + deg g3

3

)
= log

(10

3

)
> 0.
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Finally let us mention that this semigroup action satisfies the stron orbital specification
properties and, consequently, it follows from Theorems 11 and 13 that every point in the
circle is an entropy point with respect to both entropy notions.

Acknowledgements

F.G. is supported by BREUDS and P.V. is supported by a postdoctoral fellowship by
CNPq-Brazil and are grateful to Faculdade de Ciências da Universidade do Porto for the
excellent research conditions.

[1]Carlos Arteaga. Centralizers of expanding maps on the circle. Proc. Amer. Math. Soc., 114(1):263–267,
1992.

[2]Walter Bauer and Karl Sigmund. Topological dynamics of transformations induced on the space of
probability measures. Monatsh. Math., 79:81–92, 1975.

[3]Andrzej Bís. Partial variational principle for finitely generated groups of polynomial growth and some
foliated spaces. Colloq. Math., 110(2):431–449, 2008.

[4]Andrzej Bís. An analogue of the variational principle for group and pseudogroup actions. Ann. Inst.
Fourier (Grenoble), 63(3):839–863, 2013.
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