
TOPOLOGICAL ENTROPY OF LEVEL SETS OF EMPIRICAL MEASURES

FOR NON-UNIFORMLY EXPANDING MAPS

XUETING TIAN AND PAULO VARANDAS

Abstract. In this article we obtain a variational principle for saturated sets for maps with some non-uniform
specification properties. More precisely, we prove that the topological entropy of saturated sets coincides with the
smallest measure theoretical entropy among the invariant measures in the accumulation set. Using this fact we
provide lower bounds for the topological pressure of the irregular set and the level sets in the multifractal analysis
of Birkhoff averages for continuous observables. The topological entropy estimates use as tool a non-uniform
specification property on topologically large sets, which we prove to hold for open classes of non-uniformly
expanding maps. In particular we prove some multifractal analysis results for C1-open classes of non-uniformly
expanding local diffeomorphisms and Viana maps [2, 30].

1. Introduction

The study of the thermodynamic formalism and multifractal analysis for maps with some hyperbolicity has
drawn the attention of many researchers from the theoretical physics and mathematics communities in the last
decades. The general concept of multifractal analysis, that can be traced back to Besicovitch, is to decompose
the phase space in subsets of points which have a similar dynamical behavior and to describe the size of each
of such subsets from the geometrical or topological viewpoint. We refer the reader to [19, 21] and references
therein. A first natural problem is the multifractal analysis of Birkhoff averages. Given a continuous map T of
a compact metric space X and an observable φ : X → R, it is natural to decompose

X =
⋃

α∈R

Xα ∪ Iφ(T )

where Xα = {x ∈ M : limn→∞
1
n
Snψ(x) = α} are level sets of convergence for Birkhoff averages and the

irregular set Iφ(T ) is the set of points for which the Birkhoff averages for φ does not converge. The description
of these level sets arise in the analysis of level sets in several important quantities in dynamics. For instance,
in the special case of a C1 interval map f , the level sets on the multifractal decomposition associated to the
Birkhoff averages of the potential φ = log |f ′| coincides with the set of points with the same Lyapunov exponent.

From the measure theoretical viewpoint, Birkhoff’s ergodic theorem guarantees that the irregular set has
zero measure for every invariant measure. Nevertheless, irregular sets may have full topological entropy and
full Hausdorff dimension [21]. A multifractal analysis program has been carried out successfully to deal e.g.
with the Lyapunov spectrum, self-similar measures and local entropies [25, 19, 20, 4, 26, 9, 13, 14, 5, 32]
in contexts of uniform and non-uniform hyperbolicity. Some methods to describe the topological entropy of
level sets include the use of the differentiability and convexity of the pressure function, the existence of large
deviations rate functions or the use of a specification property. Despite the fact that it provides stronger results,
the description of the level sets of Birkhoff averages using the strict convexity of the pressure function is often
possible only for observables that are at least Hölder continuous.

A major question in multifractal analysis is to describe the topological entropy or Hausdorff dimension of the
so called saturated sets. A saturated set in X is the subset of points x ∈ X whose accumulation points VT (x),
in the weak∗ topology, of the empirical measures

En(x) :=
1

n

n−1
∑

i=0

δT i(x)
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in the space of T -invariant probability measures coincides with a prescribed subset of invariant probability
measures. Saturated sets can be used to describe convergence properties of Birkhoff averages with respect to
every continuous observable. On the one hand, by weak∗ convergence, VT (x) is a singleton if and only if the
Birkhoff averages of every continuous observable are convergent at x. On the other hand, if the accumulation
set VT (x) contains invariant measures µ1, µ2 that distinguish a continuous potential φ (i.e. so that

∫

φdµ1 6=
∫

φdµ2) then x is a Birkhoff irregular point associated to φ. Therefore, the global understanding of saturated
sets in the space of probability measures allows to derive as a consequence, important results on the multifractal
analysis of Birkhoff averages for continuous observables. One of the key difficulties to estimate the topological
entropy of saturated sets consists of the fact that, since these enclose information on the Birkhoff averages of all
continuous observables, no information on the strict convexity and differentiability of the pressure function can
be used, even in a uniformly hyperbolic context. These difficulties were overcomed by Takens and Verbistki [25]
and by Pfister and Sullivan [23] that used some notions similar to specification, to characterize the topological
pressure of saturated sets in the case of maps with some hyperbolicity, including the Maneville-Pomeau map
and β-shifts. Some of the difficulties that arise in the use of the previous methods to obtain multifractal analysis
results for multidimensional non-uniformly expanding maps are that the pressure function is much harder to
describe and that specification is most likely to fail in the absence of uniform hyperbolicity (see e.g. [17, 24] and
references therein).

In the present paper we contribute to the description of saturated sets for non-uniformly expanding maps.
Although expanding and hyperbolic measures satisfy a non-uniform specification property [18, 28] (in rough
terms, any finite pieces of orbits of generic points can be shadowed by a true orbit of the dynamics and
that the time lag between pieces of orbits grow sublinearly on the size of the pieces of orbits) these notions
have been established for generic points of ergodic and invariant measures. For that reason, such notions are
not a suitable tool to describe multifractal analysis since ‘shadowable points’ consist of Birkhoff regular with
respect to every continuous observable. For that reason, we provide a criterium for non-uniformly expanding
maps to admit a topologically large set of points with (topological) non-uniform specification properties (cf.
Theorem B). In particular, this provides a criterium for creating Birkhoff irregular points using orbits of points
which are generic for different ergodic measures, something that was not possible using [18, 28]. This consists
of a method different from the improved shadowing lemma developed by C. Liang, G. Liao, W. Sun and X.
Tian [16] in the context of non-uniformly hyperbolic diffeomorphisms. Our main result (Theorem A) is that,
under (topological) non-uniform specification properties, the topological entropy of the set of points whose
empirical measures accumulates on two ergodic measures is bounded below by the minimum entropy among
both measures. Using this, we provide a description of multifractal analysis of Birkhoff averages for continuous
potentials for both irregular set and level sets (Corollaries A, B and C). We use our main results to study the
multifractal analysis of Birkhoff averages for multidimensional non-uniformly expanding maps including Viana
maps (we refer the reader to Section 2.3 for precise statements).

2. Statement of the main results

2.1. Topological entropy of level sets of empirical measures. Let T : X → X be a continuous map on a
compact metric space X and MT (X), Me

T (X) denote the space of T -invariant, T -ergodic probability measures
respectively. Given x ∈ X , let VT (x) ⊂ MT (X) be the set of accumulation points of the empirical measures

En(x) :=
1

n

n−1
∑

i=0

δT i(x).

For any K ⊂ MT (X) it is natural to consider both sets

GK = {x ∈ X : VT (x) ∩K 6= ∅} and GK = {x ∈ X : VT (x) = K}.

It follows from the work of Pfister and Sullivan [23] that for any non-empty, compact set K ⊂ MT (X),

htop(T,G
K) ≤ sup{hµ(f) : µ ∈ K} (2.1)

and, if in addition K ⊂ MT (X) is connected,

htop(T,GK) ≤ inf{hµ(f) : µ ∈ K}. (2.2)

Here we provide an extension of this result that makes use of some notions of non-uniform specification (we
refer the reader to Subsection 4.3 for the definitions). Our main result here is as follows.
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Theorem A. Let T : X → X be a continuous map of a compact metric space X and let ∆ ⊆ X. Given two
invariant measures µ1, µ2 ∈ MT (∆),
(1) if T has non-uniform specification on ∆,

lim
ǫ→0

htop(T,QGµ1,µ2(ǫ)) ≥ min{hµ1(T ), hµ2(T )}, (2.3)

where QGµ1,µ2(ǫ) = {x ∈ X | dHaus(VT (x),K) < ǫ} and K = {tµ1 + (1− t)µ2| t ∈ [0, 1]}.
(2) if T has strong non-uniform specification on ∆, then

htop(T,Gµ1,µ2) = min{hµ1(T ), hµ2(T )}, (2.4)

where Gµ1,µ2 = {x ∈ X |VT (x) = {tµ1 + (1− t)µ2| t ∈ [0, 1]}}.

Some comments are in order. If T has strong non-uniform specification on ∆ then it is expected that if
K ⊂ MT (X) is a non-empty, compact and convex set then

htop(T,GK) = inf{hµ(T ) : µ ∈ K} = inf{hµ(T ) : µ ∈ ∂K}.

This is coherent with the second item of Theorem A since, in the case that Gµ1,µ2 = {x ∈ X |VT (x) = {tµ1 +
(1 − t)µ2| t ∈ [0, 1]}} the affine property of the measure theoretical entropy implies that min{htµ1+(1−t)µ2

(T ) :
t ∈ [0, 1]} = min{hµ1(T ), hµ2(T )}. Although we do not pursue that here, it is also expected our method to
produce estimates on the topological pressure of saturated sets.

The classical approach to prove that the irregular set of continuous observables that are not cohomologous
to a constant has full topological entropy uses specification to create points whose Birkhoff averages oscillate
between space averages with respect to two ergodic measures µ1, µ2. In this article we describe the set of
points whose empirical measures have a prescribed accumulation set. In rough terms, given ergodic measures
µ1 and µ2, the proof of Theorem A follows the strategy of Pfister and Sullivan [23] to bound the entropy of the
set of points whose empirical measures accumulate on a convex set K by the entropy of a Cantor sets whose
topological entropy is bounded below by the smallest entropy of the measures in K. The construction of such a
Cantor set uses the non-uniform specification property on some set that contains the basin of different ergodic
and expanding measures. In particular, we can use these results to provide some results on the multifractal
analysis of open classes of multidimensional non-uniformly expanding maps derived from expanding and Viana
maps [30, 29].

2.2. Multifractal analysis of Birkhoff averages. Given a continuous function φ : X → R let

Rφ(T ) :=
{

x ∈ X | Birkhoff averages
1

n

n−1
∑

i=0

φ(T i(x)) converge as n→ +∞
}

.

For convenience, we refer to Rφ(T ) as the regular set with respect to φ (or simply φ-regular set). The φ-irregular
set is defined as Iφ(T ) = X \Rφ(T ). These two sets describe different asymptotic behavior under the observation
of the given continuous function φ. Clearly, if φ is cohomologous to a constant, meaning that φ = u◦T−u+c for
some c ∈ R and u : X → R continuous, then the Birkhoff averages converge at every point and the irregular set
is empty. The next results show that if the dynamics satisfies some specification property then the topological
entropy of the irregular set is bounded below by the entropy of the measures supported in a set with non-uniform
specification. The notions of non-uniform specification are defined in Subsection 4.3 below.

2.2.1. Maps with strong non-uniform specification. For any continuous function φ : X → R and any a ∈ R the
φ-regular set can be further decomposed in level sets. Indeed, given a ∈ R let

Rφ,a(T ) :=
{

x ∈ X | lim
n→∞

1

n

n−1
∑

i=0

φ(T i(x)) = a
}

,

and observe that Rφ(T ) can be written as the following disjoint union

Rφ(T ) =
⊔

a∈R

Rφ,a(T ).

Corollary A. Let T : X → X be a continuous map of a compact metric space X, let ∆ ⊆ X and let φ : X → R

be a continuous function. Given any real number a ∈ R, if T has strong non-uniform specification on ∆, then

htop(T,Rφ,a(T )) ≥ sup{hρ(T )| ρ ∈ MT (∆) and

∫

φdρ = a}.
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2.2.2. Maps with non-uniform specification. In what follows we also consider dynamics where do not require
the strong non-uniform specification. The first result concerns the irregular set of continuous observables.

Corollary B. Let T : X → X be a continuous map of a compact metric space X, let ∆ ⊆ X and φ : X → R

be a continuous function. Suppose that T has non-uniform specification on ∆. If

inf
µ∈MT (∆)

∫

φdµ < sup
µ∈MT (∆)

∫

φdµ, (2.5)

then
htop(T, Iφ(T )) ≥ sup{hρ(T )| ρ ∈ MT (∆)}.

In particular, if T admits a maximal entropy measure supported on ∆ then Iφ(T ) carries full entropy.

Some comments are in order. It is well known that if T satisfies the specification property then the following
are equivalent: (i) infµ∈MT

∫

φdµ < supµ∈MT

∫

φdµ, (ii) the Birkhoff averages of φ are not uniformly conver-
gent to a constant, and (iii) the Birkhoff irregular set Iφ(T ) is non-empty. Moreover, the Livsic theorem for
mixing uniformly expanding maps assures that the later conditions hold if and only if φ is not cohomologous to
a constant, or equivalently, there are expanding periodic points p1 and p2 so that

∫

φdδO(p1) <
∫

φdδO(p2). In
many applications of our results to non-uniformly expanding maps, the set ∆ ⊆ X of points where nonuniform
specification holds will be taken as the set of points whose sequence of hyperbolic times is non-lacunar, a notion
that is intimately related to the integrability of the first hyperbolic time map (cf. Subsection 7.1).

Returning to the multifractal analysis, if, instead of its strong version, the dynamical system satisfies the non-
uniform specification property then one could not estimate the topological entropy of level sets. Nevertheless,
given a continuous potential φ, a ∈ R and σ > 0 one can estimate the size of the following sets obtained as
approximations of level sets

Rφ,a,σ(T ) := {x ∈ X | a− σ < lim inf
n→∞

1

n

n−1
∑

i=0

φ(T i(x)) ≤ lim sup
n→∞

1

n

n−1
∑

i=0

φ(T i(x)) < a+ σ}.

More precisely

Corollary C. Let T : X → X be a continuous map of a compact metric space X, let ∆ ⊆ X and φ : X → R

be a continuous function. Given any real number a ∈ R, if T has non-uniform specification on ∆, then

(1) for any σ > 0,

htop(T,Rφ,a,σ(T )) ≥ sup{hρ(T )| ρ ∈ MT (∆) and

∫

φdρ ∈ (a− σ, a+ σ)}.

(2) for any σ > 0,

lim
σ→0

htop(T,Rφ,a,σ(T )) ≥ sup{hρ(T )| ρ ∈ MT (∆) and

∫

φdρ = a}.

2.3. Non-uniformly expanding maps. Throughout this subsection let T be a C1-map on X which behaves
like a power of the distance to a critical/singular region C: there exists B ≥ 1, β > 0 so that for all x ∈ X \ C
and all v ∈ TxX

(C1) 1
B
dist(x, C) ≤ ‖DT (x)v‖

‖v‖ ≤ Bdist(x, C)

and

(C2) | log ‖DT (x)−1‖ − log ‖DT (y)−1‖ | ≤ B dist(x,y)
dist(x,C)β

(C3) | log | detDT (x)− log | detDT (y)| | ≤ B dist(x,y)
dist(x,C)β

.

for all points x, y ∈ X \ C satisfying dist(x, y) < dist(x, C)/2. Let B, β be given by condition (C2) and take
0 < b < { 1

2 ,
1
2β }. The choice of these constants is important for the construction of hyperbolic times (see

e.g. [2]).

Definition 2.1. Assume that η ∈ MT (X). We say that (T, η) is non-uniformly expanding if there exists σ > 1
such that η-almost every x satisfies

lim sup
n→∞

1

n

n−1
∑

j=0

log ‖DT (T j(x)−1‖ ≤ −2 logσ < 0 (2.6)
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and the slow recurrence condition: for every ε > 0 there exists δ > 0 such that, for η-almost every point x ∈ X,

lim sup
n→∞

1

n

n−1
∑

j=0

− log distδ(T
j(x), C) < ε, (2.7)

where distδ(x, C) = 1 if dist(x, C) > δ and distδ(x, C) = dist(x, C) otherwise.

The non-uniform hyperbolicity property for an ergodic measure µ implies on the exponential non-uniform
specification property on its basin of attraction B(µ) [18, 28]. We are interested in extending this fact to sets
that contains the basin of several invariant measures. This motivates the following definition.

We say that T is non-uniformly expanding if

M =
⋃

σ>1,δ>0

Mσ,δ 6= ∅

where, for any σ > 1 and δ > 0, Mσ,δ ⊂ MT (X) denotes the space of T -invariant probability measures η that
have a non-lacunar sequence of (σ, δ)-hyperbolic times. It is known that if the first hyperbolic time is integrable
then the sequence of hyperbolic times is non-lacunar (see e.g. [29]). We refer the reader to Subsection 7.1 for
the definitions. The following result provides a criterium for a non-uniformly expanding map to satisfy the
(strong) exponential non-uniform specification property.

Theorem B. Let X be a compact Riemannian manifold and let T : X → X be a topologically exact C1-
endomorphism. If M 6= ∅ then T satisfies the (strong) exponential non-uniform specification property on a set
∆ ⊂ X such that η(∆) = 1 for every η ∈ M. More precisely, for any points x1, x2, . . . , xk in ∆ there exists
δ > 0 and σ > 1 (depending on the points) so that the following property holds: for any n1, . . . , nk ≥ 1 there
exists y ∈ X so that

d(T j(xi), T
j+n1+p1+···+ni−1+pi−1(y)) < εσ− 1

2 (ni−j)

for every 0 ≤ j ≤ ni, 1 ≤ i ≤ k and 0 < ε < δ.

We observe that the dependence of the constants δ, σ on the points can be dropped out, for instance in the
case that the set ∆ consists of generic points for a finite number of ergodic and expanding maps (cf. Remark 7.1).

3. Some examples

It is clear both the non-uniform and strong non-uniform specification properties hold for uniformly hyper-
bolic diffeomorphisms and expanding maps. In particular, our results extend some well known results on the
multifractal analysis in the uniformly hyperbolic setting. Moreover, our results can be applied for the one-
dimensional Maneville-Pomeau transformations and Benedicks-Carleson quadratic maps. In what follows we
focus on providing some new results on the multifractal analysis of multidimensional non-uniformly expanding
maps.

3.1. Local diffeomorphisms with non-uniform expansion. The first class of examples we shall consider are
multidimensional local diffeomorphisms obtained by local bifurcation of expanding maps, considered originally
by Alves, Bonatti and Viana [2].

Let T0 be an expanding map in T
n and take a periodic point p ∈ T

n for T0. Let U be a C1-open set of local
diffeomorphisms so that every T ∈ U is a C1-local diffeomorphism obtained from T0 by a bifurcation in a small
neighborhood V of p in such a way that:

(1) every point x ∈ T
n has some preimage outside V ;

(2) V can be covered by q < deg(T ) domains of injectiveness for T ;
(3) ‖DT (x)−1‖ ≤ σ−1 for every x ∈ T

n\V , and ‖DT (x)−1‖ ≤ L for every x ∈ T
n where σ > 1 is large

enough or L > 0 is sufficiently close to 1 (cf. [2]);
(4) T is topologically exact: for every open set W ⊂ T

n there is N ≥ 1 for which TN(W ) = T
n.

Although the original expanding maps satisfy the specification property it is expected that most local diffeo-
morphisms in U should not satisfy the specification property (we refer the reader to [24] for such a discussion
in the case of partially hyperbolic diffeomorphisms). The coexistence of expanding and contracting behavior
constitutes an obstruction to a global description of the multifractal description of the dynamics. We describe
some applications in two situations:

5



(a) Equilibrium states for potentials with low variation. If φ : Tn → R is a Hölder continuous potential so that

supφ− inf φ < log deg(f)− log q (3.1)

then there exists a unique equilibrium state µφ for T with respect to φ, it is fully supported and it is an expanding
measure with an integrable first hyperbolic time map ([29]). In particular T has a unique maximal entropy
measure. Theorem B implies that there exists a dense set ∆ ⊂ T

n where T satisfies the strong (exponential)
non-uniform specification property. There exists t0 > 1 so that the potential tφ also satisfies the variation
condition (3.1) for every t ∈ [−t0, t0]. To the best of our knowledge the following was the only result known on
the multifractal analysis of these class of dynamics: the pressure function [−t0, t0] ∋ t 7→ Ptop(T, tφ) is C

1 and,
if α1 = dPtop(T, tφ)/dt |t=−t0 and α2 = dPtop(T, tφ)/dt |t=t0 then

htop(T,Rφ,α(T )) = inf
t∈R

{Ptop(T, tφ)− αt}

for every α ∈ [α1, α2] (see [9, Proposition 7.2]). Our main result, Theorem A (2) implies that

htop(T,Gµφ
) = hµφ

(T ) = Ptop(T, φ)−

∫

φdµφ

Moreover, if ψ : Tn → R is any continuous observable so that
∫

ψ dµ1 6=
∫

ψ dµ2 for some expanding mea-
sures µ1 6= µ2 then it follows from Corollary B that the irregular set carries full topological entropy, that is,
htop(T, Iψ(T )) = htop(T ).

(b) SRB measures. It follows from [2] that T has a unique (ergodic) probability measure µ1 absolutely continuous
with respect to Lebesgue, with density bounded away from zero and infinity and integrable first hyperbolic time
map. Moreover, µ1 is an equilibrium state for the potential φ = − log | detDf | (that might not satisfy the low
variation condition) and is an expanding measure. If ∆ is as above and

inf
µ∈MT (∆)

∫

log | detDT | dµ < sup
µ∈MT (∆)

∫

log | detDT | dµ

then Corollary B implies that htop(T, Iφ(T )) ≥ hµ1(T ).

3.2. Non-uniformly expanding endomorphisms with critical region. We also prove that the C3-robust
class of multidimensional non-uniformly expanding maps with singularities known as Viana maps also satisfies
the non-uniform specification property on a dense set.

In [30], Viana introduced a robust class of multidimensional non-uniformly hyperbolic maps with singularities.
More precisely, these are obtained as C3 small perturbations of the skew product T of the cylinder S1× I given
by

T (θ, x) = (dθ(mod 1) , 1− ax2 + α cos(2πθ)),

where d ≥ 16 is an integer, a is a Misiurewicz parameter for the quadratic family, and α is small. These
maps admit a unique SRB measure µ (it is absolutely continuous with respect to m = Leb, has only positive
exponents and dµ/dm ∈ Lp(m) where p = d/(d − 1)) and are strong topologically mixing on the attractor
Λ = ∩n≥0T

n(S1 × I): for every open set W there exists n ≥ 1 such that T n(W ) = Λ. See [30, 1] for more
details. Since T carries full supported expanding measures then there exists a dense set ∆ ⊂ Λ of points where
the strong non-uniformly expanding property holds. We observe that there are infinitely many expanding
measures, including periodic Dirac masses at repelling periodic points. Moreover, it follows from [22] that T
has a unique expanding map that is a maximal entropy measure and, consequently,

htop(T, Iφ(T )) = htop(T )

for any continuous observable φ so that the function µ 7→
∫

φdµ over all expanding measures is not constant.

4. Some Preliminaries

4.1. Entropy. Let T : X → X be a continuous map of a compact metric space X . Now let us to recall the
definition of topological entropy in [6] by Bowen. Let E ⊆ X be a T -invariant set and Fn(E, ǫ) be the collection
of all finite or countable covers of E by sets of the form Bm(x, ǫ) with m ≥ n. We set

C(E; t, n, ǫ, T ) := inf{
∑

Bm(x,ǫ)∈C

2−tm : C ∈ Fn(E, ǫ)},
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and C(E; t, ǫ, T ) := limn→∞ C(E; t, n, ǫ, T ). Then

htop(E, ǫ, T ) := inf{t : C(E; t, ǫ, T ) = 0} = sup{t : C(E; t, ǫ, T ) = ∞}

and the topological entropy of E is defined as htop(T,E); = limǫ→0 htop(E, ǫ, T ). In particular, if E = X, we also
denote htop(T,X) by htop(T ). It is known from [6] that if E is an invariant compact subset, then the topological
entropy htop(T,E) is same as the classical definition using the exponential growth rate of the maximal cardinality
of separated points (see Chapter 7 in [33]). Let us recall two basic facts about topological entropy from [6]: (i)
for any subsets Y1 ⊆ Y2 ⊆ X,

htop(T, Y1) ≤ htop(T, Y2), (4.1)

and (ii) if one considers a collection {Yi}
+∞
i=1 of subsets of X then

htop(T,

+∞
⋃

i=1

Yi) = sup
i≥1

htop(T, Yi). (4.2)

Let M(X) denote the space of all Borel probability measures supported on X . Let ξ = {Vi| i = 1, 2, · · · , k}
be a finite partition of measurable sets of X . The entropy of ν ∈ M(X) with respect to ξ is

H(ν, ξ) := −
∑

Vi∈ξ

ν(Vi) log ν(Vi).

Given Λ ⊂ Z we write T∨nξ :=
∨

k∈Λ T
−kξ. The entropy of ν ∈ MT (X) with respect to ξ is

h(T, ν, ξ) := lim
n→∞

1

n
H(ν, T∨nξ),

and the metric entropy of ν is hν(T ) := supξ h(T, ν, ξ). For more information of metric entropy we refer to
Chapter 4 of [33].

Let µ ∈ M(X). The measure-theoretical lower and upper entropies of µ are defined respectively by

hµ(T ) =

∫

hµ(T, x) dµ(x), hµ(T ) =

∫

hµ(T, x) dµ(x),

where

hµ(T, x) = lim
ε→0

lim inf
n→+∞

−
1

n
logµ(Bn(x, ε)),

hµ(T, x) = lim
ε→0

lim sup
n→+∞

−
1

n
logµ(Bn(x, ε)).

Brin and Katok [8] proved that for any µ ∈ Me
T (X), hµ(T, x) = hµ(T, x) for µ a.e. x ∈ X , and

∫

hµ(T, x) dµ(x) =
hµ(T ). So for µ ∈ MT (X),

hµ(T ) = hµ(T ) = hµ(T ).

From [12, Proposition 1.2] we know that if E ⊆ X is non-empty and compact, then

htop(T,E) = sup{hµ(T ) : µ ∈ M(X), µ(E) = 1}. (4.3)

We also need to recall Katok’s definition of metric entropy (see [15]). It is defined for ergodic measures and
equivalent to the classical one. Let Z ⊂ X . A set S is (n, ε)-separated for Z if S ⊂ Z and dn(x, y) > ε for
any x, y ∈ S and x 6= y. A set S ⊂ Z if (n, ε)-spanning for Z if for any x ∈ Z, there exists y ∈ S such that
dn(x, y) ≤ ε. Let µ ∈ Me

T (X). For ε > 0, ρ ∈ (0, 1) and l ≥ 1, let Nµ
l (ε, ρ) be the minimal number of ε−balls

Bl(x, ε) in the dl−metric, which cover a set Z ⊆ X of measure at least 1− ρ. Define

hµ(T, ε) = lim inf
l→∞

1

l
logNµ

l (ε, ρ), h
′
µ(T, ε) = lim sup

l→∞

1

l
logNµ

l (ε, ρ).

Then from [15] we know

hµ(T ) = lim
ε→0

hµ(T, ε) = lim
ε→0

h′µ(T, ε). (4.4)
7



4.2. Invariant measures. Let {ϕj}j∈N
be a dense subset of C(X,R) and set ‖ϕi‖ = max{|ϕi(x)| : x ∈ X}.

The expression

ρ(ξ, τ) =

∞
∑

j=1

|
∫

ϕjdξ −
∫

ϕjdτ |

2j‖ϕj‖

defines a metric on M(X) which is compatible with the weak∗ topology (see [33]). Observe that

ρ(ξ, τ) ≤ 2 for any ξ, τ ∈ M(X). (4.5)

It is well known that the natural projection x 7→ δx is continuous and, if we define the push-forward operator
Tf on M(X) by Tfµ(A) = µ(T−1(A)), we can identify (X, f) with Tf restricted to the set of Dirac measures
(these are conjugate). Therefore, assume without loss of generality that the metric d is inherited from ρ, defined
by d(x, y) = ρ(δx, δy). The following facts are simple consequences of (4.5) and the fact that ρ(δx, δy) = d(x, y):

Lemma 4.1. [11, Lemma 2.1] Let (X,T ) be a continuous dynamical system and let x ∈ X.

(1) If 0 ≤ k < n < m then ρ(Em(x), En(T k(x))) ≤
2
m
(m− n+ k);

(2) Given ε > 0 and p ∈ N, for every y ∈ Bp(x, ε) we have ρ(Ep(y), Ep(x)) < ε;
(3) Given ε > 0 and p, q ∈ N satisfying p ≤ q ≤ (1+ε/2)p, for every y ∈ Bp(x, ε) we have ρ(Eq(y), Ep(x)) <

2ε.

4.3. Some forms of specification. In the last years some different versions of non-uniform specification have
been introduced, many of them unrelated. Here we define the notions that will be used throughout this paper.
For any n ∈ N, the dn-distance between x, y ∈ X is defined as

dn(x, y) := max
0≤i≤n−1

{d(T ix, T iy)}.

Let x ∈ X , n ≥ 1 and ε > 0. The dynamical ball Bn(x, ε) is defined as the set

Bn(x, ε) := {y ∈ X | dn(x, y) ≤ ε}.

The following definition is the topological counterpart of [28, Definition 2.2].

Definition 4.2. We say that T satisfies the non-uniform specification property on the set ∆ ⊆ X, if there exists
δ > 0 such that for every x ∈ ∆, every n ≥ 1 and every 0 < ε < δ there exists a positive integer p(x, n, ε) ≥ 1
so that

lim
ε→0

lim sup
n→∞

1

n
p(x, n, ε) = 0

and the following holds: given points x1, · · · , xk in ∆ and positive integers n1, · · · , nk, if pi ≥ p(xi, ni, ε) then
there exists z ∈ X that ε-shadows the orbits of each xi during ni iterates with a time lag of p(xi, ni, ε) in between
T ni(xi) and xi + 1, that is, z ∈ B(x1, n1, ε) and T

n1+p1+···+ni−1+pi−1(z) ∈ B(xi, ni, ε) for every 2 ≤ i ≤ k.

In the case that T is a topologically exact C1-local diffeomorphism and µ is a T -invariant and ergodic
probability measure with infinitely many hyperbolic times then f satisfies the non-uniform specification property
on the set B(µ), where

B(µ) =
{

x ∈M :
1

n

n−1
∑

j=0

δT j(x) → µ in the weak∗-topology
}

stands for the ergodic basin of attraction of µ (see [28]). Here we also consider two similar-flavored notions with
a (summable) control of the distances during the ‘shadowing’.

Definition 4.3. We say that T satisfies the strong non-uniform specification property on some set ∆ ⊆ X, if the
non-uniform specification property holds on ∆,

lim sup
n→∞

1

n
p(x, n, ε) = 0

for every 0 < ε < δ and the shadowing sizes during the non-uniform specification process satisfy

ni−1
∑

j=0

d(T j(xi), T
j+n1+p1+···+ni−1+pi−1(y)) < ε, ∀1 ≤ i ≤ k.

This condition is weaker than the following one, which requires the shadowing distances to be exponentially
small and that holds for broad classes of non-uniformly expanding maps (recall Theorem B).
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Definition 4.4. We say that T satisfies the exponential non-uniform specification property with respect to the
exponent λ > 0 on the set ∆ ⊆ X, if non-uniform specification property holds on ∆,

lim sup
n→∞

1

n
p(x, n, ε) = 0

for every 0 < ε < δ and the shadowing sizes in the non-uniform specification can be taken exponentially small,
i.e.,

d(T j(xi), T
j+n1+p1+···+ni−1+pi−1(y)) < εe−λmin{j,ni−j}, 0 ≤ j ≤ ni, 1 ≤ i ≤ k.

In the previous definitions the term ‘non-uniform’ refers to the time lag between the shadowing of the pieces
while the terms ‘strong’ and ‘exponential’ refer to sharper approximations of the distances involved in the
shadowing. Specification properties have been proved to be strongly related to hyperbolicity. The original
specification property was first introduced by Bowen in [7] (see also [10]) and requires the function p(x, n, ε)
to depend just on ε. Thus, in comparison with non-uniform specification properties, the time required to be
able to shadow the finite pieces of orbits does not depend on their size. Similarly, exponential specification
is stronger than exponential non-uniform specification in the same sense (see e.g. [27]). Indeed the following
relations hold:

mixing hyperbolic basic pieces
⇓

exponential specification ⇒ exponential non-uniform specification
⇓

⇓ strong non-uniform specification
⇓

specification ⇒ non-uniform specification

5. Proof of Theorem A

5.1. Proof of Theorem A (1). We assume without loss of generality that the measures µ1, µ2 are ergodic.
In general, since one can use the ergodic decomposition of invariant measures exactly as in [23, Lemma 6.2] we
shall omit the details here. Let h∗ = min{hµ1(T ), hµ2(T )}. We will show that for any γ > 0, ǫ0 > 0, there is
some ǫ ∈ (0, ǫ0) such that

htop(T,QGµ1,µ2(ǫ)) ≥ h∗ − 5γ. (5.1)

This implies that for any γ > 0, ǫ0 > 0,

htop(T,QGµ1,µ2(ǫ0)) ≥ h∗ − 5γ,

because QGµ1,µ2(ǫ) ⊆ QGµ1,µ2(ǫ0). Then (2.3) holds. Now we fix γ > 0, ǫ0 > 0 and start to prove (5.1).

Step 1. Choice of separated sets.
For ε > 0, l ≥ 1, θ > 0, define

∆θ
ε,l := {x ∈ ∆ |

p(x, n, ε)

n
< θ holds for any n ≥ l}.

Note that if l ≥ l′, then ∆θ
ε,l ⊇ ∆θ

ε,l′ and for any µ ∈ MT (∆) and θ > 0, one has

lim
ε→0

lim
l→∞

µ(∆θ
ε,l) = 1.

Fix a rational number θ ∈ (0, 13 ǫ0) such that

1

1 + θ
(h∗ − 3γ) > h∗ − 4γ. (5.2)

Fix a number ρ0 ∈ (0, 1). For the measures µ1 and µ2, by Katok’s definition of metric entropy, take ε ∈ (0, 13ǫ0)
such that for i = 1, 2,

hµi
(T, 4ε) = lim inf

n→+∞

1

n
logNµi

n (4ε, ρ0) > hµi
(T )− γ; (5.3)

and simultaneously, liml→∞ µi(∆
θ
ε,l) > 1− ρ0. Let ǫ = ε+ 2θ. By the choice of ε and θ, one has ǫ ∈ (0, ǫ0).9



Take l large enough such that

µ1(∆
θ
ε,l) > 1− ρ0, µ2(∆

θ
ε,l) > 1− ρ0.

Let g : N → {1, 2} be given by g(k) = (k + 1)(mod 2) + 1. Choose a strictly decreasing sequence δk → 0 and a
strictly increasing sequence Lk → ∞ so that the set

Jk := {x ∈ ∆θ
ε,l : ρ(En(x), µg(k)) < δk for all n ≥ Lk}

satisfies µg(k)(Jk) > 1 − ρ0 for all k ≥ 1. This is a simple consequence of the fact that the ergodic basin of

attraction of µi is a full µi-measure set. Let Ekn be a maximal (n, 4ε)-separated set for Jk. Notice that a maximal
(n, 4ε)-separated set for Jk is also a (n, 4ε)-spanning set for Jk and thus Ekn is also a (n, 4ε)-spanning set for
Jk. Since µg(k)(Jk) > 1− ρ0, then by (5.3)

lim inf
n→+∞

1

n
log#Ekn ≥ lim inf

n→+∞

1

n
logN

µg(k)
n (4ε, ρ0) > hµg(k)

(T )− γ. (5.4)

Take nk be a strictly increasing sequence such that nk ≥ Lk,
1
nk

log#Eknk
> hµg(k)

(T )− 3γ and nk

nk+1
→ 0. We

may assume in addition that each nkθ is always integer. Let

Sk := Eknk
, µk = µg(k), mk = nkθ.

From above construction, we have

#Sk ≥ exp((hµk
(T )− 3γ)nk). (5.5)

Step 2. Construction of the fractal F.
The purpose here is to construct a fractal F with topological entropy bounded below by h∗ and in such a way

that the accumulation points of empirical measures associated to points of F remain ε-close to the line segment
K = {tµ1 + (1 − t)µ2 : t ∈ [0, 1]}. Let us choose a sequence with N0 = 0 and Nk increasing to ∞ sufficiently
quickly so that

lim
k→∞

nk+1 +mk+1

Nk
= 0, lim

k→∞

N1(n1 +m1) + . . .+Nk(nk +mk)

Nk+1
= 0. (5.6)

Let xi = (xi1, . . . , x
i
Ni

) ∈ SNi

i . For any (x1, . . . , xk) ∈ SN1
1 × . . .×SNk

k , by non-uniform specification property,
we have

B(x1, . . . xk) :=
k
⋂

i=1

Ni
⋂

j=1

T−
∑i−1

l=0 Nl(nl+ml)−(i−1)N−(j−1)(ni+mi)Bni
(xij , ε) 6= ∅. (5.7)

For every k ≥ 1, consider the set Fk defined as

Fk = {B(x1, . . . , xk) : (x1, . . . xk) ∈ SN1
1 × . . .× SNk

k }.

Note that each set of Fk is non-empty and compact. Moreover, since Fk+1 ⊆ Fk for every k ≥ 1 then
F :=

⋂∞
k=1 Fk is compact and non-empty.

Lemma 5.1. For any p ∈ F, dHaus(VT (p),K) < ǫ. In other words, F ⊆ QGµ1,µ2(ǫ).

Proof. The proof is standard. Define tk =
∑k
i=0Ni(ni +mi). Choose p ∈ F and let pk := T tk−1p. Then there

exists (xk1 , . . . , x
k
Nk

) ∈ SNk

k such that

pk ∈
Nk
⋂

j=1

T−(j−1)(nk+mk)
nk−1
⋂

t=0

T−tB(T txkj , ε).
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By Lemma 4.1 items (1) and (2), the distance between empirical measures of each of the x′is can be bounded
as:

ρ(
1

Nk

Nk
∑

j=1

Enk
(xkj ), Etk−tk−1

(pk))

≤
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), Enk+mk

(T (j−1)(nk+mk)pk))

≤
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), Enk

(T (j−1)(nk+mk)pk))

+
1

Nk

Nk
∑

j=1

ρ(Enk
(T (j−1)(nk+mk)pk), Enk+mk

(T (j−1)(nk+mk)pk))

≤ ε+ 2
mk

nk +mk

≤ ε+ 2θ. (5.8)

Using Lemma 4.1 (1) one more we deduce that

ρ(Etk(p), µk)

≤ ρ(Etk(p), Etk−tk−1
(pk)) + ρ(

1

Nk

Nk
∑

j=1

Enk
(xkj ), Etk−tk−1

(pk)) +
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), µk)

≤ 2
tk − (tk − tk−1) + tk−1

tk
+ (ε+ 2θ) + δk.

Then lim supk→∞ ρ(Etk(p), µk) ≤ ǫ. For other subsequences the strategy of the proof follows well known ideas
by constructing an appropriate convex sum of the measures µ1 and µ2. Here we omit the details. �

Step 3. Construction of a special sequence of measures ωk.
We must first undertake an intermediate construction. For each x = (x1, . . . , xk) ∈ SN1

1 × . . . × SNk

k , we
choose one point z = z(x) such that z ∈ B(x1, . . . xk). If Tk is the set of all points constructed in this way we
compute its cardinality below.

Lemma 5.2. Given k ≥ 1, if x, y ∈ SN1
1 × . . . × SNk

k are distinct then any z1 := z(x) and z2 := z(y) are

different points. In particular #Tk = #SN1
1 . . .#SNk

k .

Proof. Since x 6= y, there exists i, j such that xij 6= yij . We have

dni
(xij , T

hz1) < ε and dni
(yij , T

hz2) < ε,

where h =
∑i−1

l=0 Nl(nl + ml) + (j − 1)(ni + mi). Since dni
(xij , y

i
j) > 4ε then dni

(T hz1, T
hz2) > 2ε, which

guarantees that the points are distinct. �

Now we start to define the measures on F . For each k ≥1 consider the measure

νk :=
∑

z∈Tk

δz

obtained as the sum of Dirac measure at points of Tk. Consider the probability measure ωk := 1
#Tk

νk obtained

by normalization of νk.

Lemma 5.3. Let ω be an accumulation point of (ωk)k≥1 in the weak∗ topology. Then ω(F ) = 1.

Proof. For any fixed l and every p ≥ 0, notice that ωl+p(Fl+p) = 1 and Fl+p ⊆ Fl. Then ωl+p(Fl) = 1. By
assumption there exists lk → ∞ such that ω = limk→∞ ωlk . Since each Fl is closed, by weak∗ convergence,

ω(Fl) ≥ lim sup
k→∞

ωlk(Fl) = 1.

This implies that ω(F ) = liml→∞ ω(Fl) = 1. �
11



Step 4. Estimate of htop(T,QGµ1,µ2(ǫ)).

The strategy of the proof is to use (cf. equation (4.3)) that

htop(T, F ) = sup{hµ(T ) : µ ∈ M(X), µ(F ) = 1}

and to provide lower bounds on the lower entropy of probability measures supported on the fractal F . Let B :=
Bn(q, ε) be an arbitrary dynamical ball with B ∩ F 6= ∅. Let k be the integer number such that tk ≤ n < tk+1.
We firstly consider n with tk ≤ n < tk+1 −mk. Let j ∈ {0, . . . , Nk+1 − 1} be the number such that

tk + (nk+1 +mk+1)j ≤ n < tk + (nk+1 +mk+1)(j + 1).

We suppose that j ≥ 1 (and leave the details of the easier case j = 0 to the reader). Now we start to estimate
the number of points in the set B ∩ Tk+p.

Lemma 5.4. For every integer p ≥ 1, one has ωk+p(B) ≤ (#Tk)−1(#Sk+1)
−j .

Proof. Firstly let us assume that p = 1 and prove that ωk+1(B) ≤ (#Tk)
−1(#Sk+1)

−j . We need an upper
bound estimate for the number of points which can be in the set Tk+1 ∩ B. If ωk+1(B) = 0 we are done. Thus
we may assume throughout that ωk+1(B) > 0 and, in particular, Tk+1 ∩ B 6= ∅.

Since Tk+1∩B 6= ∅ there exist x ∈ SN1
1 ×. . .×SNk

k and xk+1 ∈ S
Nk+1

k+1 and some point z = z(x, xk+1) ∈ Tk+1∩B.
Fix x and xk+1 as above and consider the set

Cx;x1,...,xj
= {z(x, y1, . . . , yNk+1

) ∈ Tk+1 : y1 = x1, . . . , yj = xj}.

This corresponds roughly to the ‘cylinder’ formed by all possible choices of points that shadow the coordinate
elements that determine the point x and the first j components of the point xk+1.

Claim: If z′ = z(y, y
k+1

) ∈ Tk+1 ∩ B for some y and y
k+1

then z′ ∈ Cx;x1,...,xj
.

Proof of the claim: Take z′ = z(y, y
k+1

) ∈ Tk+1 ∩ B for some y and y
k+1

. We prove that xl = yl for l ∈

{1, 2, . . . , j} (since the proof that x = y is completely similar we shall omit it). Since z, z′ ∈ B = Bn(q, ε) then

dn(z, z
′) < 2ε, (5.9)

Assume by contradiction that there exists 1 ≤ l ≤ j so that yl 6= xl, and let al = tk + (l − 1)(nk+1 +mk+1).
Recall that dnk+1

(xl, yl) > 4ε. Using

dnk+1
(T alz, xl) < ε and dnk+1

(T alz′, yl) < ε,

then we obtain that

dn(z, z
′) ≥ dnk+1

(T alz, T alz′)

≥ dnk+1
(xl, yl)− dnk+1

(T alz, xl)− dnk+1
(T alz′, yl) > 2ε,

which contradicts (5.9). This proves the claim. �

We proceed with the proof of the lemma. By the claim we have that

νk+1(B) ≤ #Cx;x1,...,xj
= (#Sk+1)

Nk+1−j

and, consequently,
ωk+1(B) ≤ (#Tk+1)

−1(#Sk+1)
Nk+1−j = (#Tk)

−1(#Sk+1)
−j .

This proves the lemma in the case that p = 1. In the case that p > 1, similar estimates as above yield that
νk+p(B) ≤ #Cx;x1,...,xj

(#Sk+2)
Nk+1 . . . (#Sk+p)Nk+p .Dividing by #Tk+p, it follows that ωk+p(B) ≤ (#Tk)−1(#Sk+1)

−j

proving the lemma. �

To finalize the proof of Theorem A (1) we are left to give the estimate on the topological entropy of the set
QGµ1,µ2(ǫ). Using (5.5), (5.2) and mi = niθ, we have

#Tk(#Sk+1)
j ≥ exp{(h∗ − 3γ)(N1n1 +N2n2 + . . .+Nknk + jnk+1)}

= exp
{ (h∗ − 3γ)

1 + θ
n
}

(5.10)

≥ exp{(h∗ − 4γ)n}.

Thus

ωk+p(B) ≤ (#Tk−1)
−1(#Sk)

−j ≤ exp{−(h∗ − 4γ)n}. (5.11)
12



This proves the theorem in this first case that tk ≤ n < tk+1 −mk.

Now we consider the case that tk+1 −mk ≤ n < tk+1. Using B ⊆ Btk+1−mk−1(q, ε) together with Lemma 5.4
and (5.10), we have that for p ≥ 1,

ωk+p(B) ≤ ωk+p(Btk+1−mk−1(q, ε)) ≤ exp{−(h∗ − 4γ)(tk+1 −mk − 1)}.

Thus, if k is large (by using mk

tk+1
→ 0) then

ωk+p(B) ≤ exp{−(h∗ − 4γ)(tk+1 −mk − 1)} ≤ exp{−(h∗ − 5γ)n}. (5.12)

Combining (5.11) and (5.12) we have for all n,

lim sup
l→∞

ωl(Bn(q, ε)) ≤ exp{−n(h∗ − 5γ)}.

The later implies that ω(Bn(q, ε)) ≤ exp{−n(h∗ − 4γ)}. So for any q ∈ F,

hµ(T, q) ≥ h∗ − 5γ.

By (4.3), htop(T, F ) = sup{hµ(T ) : µ ∈ M(X), µ(F ) = 1} ≥ h∗ − 5γ. This finishes the proof of the first part
of the theorem. �

Proof of Theorem A (2). From (2.2), we know that

htop(T,Gµ1,µ2) ≤ min{hµ1(T ), hµ2(T )}.

Thus in order to prove (2.4), we need to prove

htop(T,Gµ1,µ2) ≥ min{hµ1(T ), hµ2(T )}.

We assume without loss of generality that the measures µ1, µ2 are ergodic. In general, since one can use the
ergodic decomposition of invariant measures exactly as in [23, Lemma 6.2] we shall omit the details here. Let
h∗ = min{hµ1(T ), hµ2(T )}. We need to show that for any γ > 0,

htop(T,Gµ1,µ2) ≥ h∗ − 5γ. (5.13)

Then (2.4) holds. Now we fix γ > 0 and start to prove (5.13).

Step 1. Choice of separated sets.
Fix a number ρ0 ∈ (0, 1). For the measures µ1 and µ2, by Katok’s definition of metric entropy, take small

number ε > 0 such that for i = 1, 2,

hµi
(T, 4ε) = lim inf

n→+∞

1

n
logNµi

n (4ε, ρ0) > hµi
(T )− γ. (5.14)

Fix a rational number θ0 > 0 such that

1

1 + θ0
(h∗ − 3γ) > h∗ − 4γ. (5.15)

Take a strictly decreasing sequence of positive rational numbers θn ↓ 0 with θ1 < θ0.
Let g : N → {1, 2} be given by g(k) = (k + 1)(mod 2) + 1. Choose a strictly decreasing sequence δk → 0 and

a strictly increasing sequence Lk → ∞ so that the set

Jk := {x ∈ ∆ :
p(x, n, ε)

n
< θk ρ(En(x), µg(k)) < δk for all n ≥ Lk}

of points whose empirical measures are δk-close to µg(k) satisfies µg(k)(Jk) > 1−ρ0 for all k ≥ 1. This is a simple

consequence of the fact that the ergodic basin of attraction of µi is a full µi-measure set. Let Ekn be a maximal
(n, 4ε)-separated set for Jk. Notice that a maximal (n, 4ε)-separated set for Jk is also a (n, 4ε)-spanning set for
Jk and thus Ekn is also a (n, 4ε)-spanning set for Jk. Since µg(k)(Jk) > 1− ρ0, then by (5.14)

lim inf
n→+∞

1

n
log#Ekn ≥ lim inf

n→+∞

1

n
logN

µg(k)
n (4ε, ρ0) > hµg(k)

(T )− γ. (5.16)

Take (nk)k a strictly increasing sequence of positive integers such that nk ≥ Lk,
1
nk

log#Eknk
> hµg(k)

(T )− 3γ

and nk

nk+1
→ 0. We may assume in addition that each nkθk is always integer. Let

Sk := Eknk
, µk = µg(k), mk = nkθk.13



From above construction, we have

#Sk ≥ exp(hµk
(T )− 3γ)nk. (5.17)

Step 2. Construction of the fractal F.
We mimic the construction of F as in the proof of Theorem A (1), by considering

B(x1, . . . xk) :=

k
⋂

i=1

Ni
⋂

j=1

T−
∑i−1

l=0 Nl(nl+ml)−(i−1)N−(j−1)(ni+mi)B̂ni
(xij , ε) 6= ∅,

where B̂n(x, ε) = {y :
∑n−1

i=0 d(T
i(x), T i(y)) < ε}, instead of the sets defined in (5.7). Here the non-emptyness

of B(x1, . . . xk) follows from the strong non-uniform specification property. After the construction of F , we need
to replace Lemma 5.1 by following lemma.

Lemma 5.5. F ⊆ Gµ1,µ2 .

Proof. The proof is analogous to the one of Lemma 5.1, replacing (5.8) by the following estimate

ρ(
1

Nk

Nk
∑

j=1

Enk
(xkj ), Etk−tk−1

(pk))

≤
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), Enk+mk

(T (j−1)(nk+mk)pk))

≤
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), Enk

(T (j−1)(nk+mk)pk))

+
1

Nk

Nk
∑

j=1

ρ(Enk
(T (j−1)(nk+mk)pk), Enk+mk

(T (j−1)(nk+mk)pk))

≤
1

nk
ε+ 2

mk

nk +mk

≤
1

nk
ε+ 2θk. (5.18)

Here the part 1
Nk

∑Nk

j=1 ρ(Enk
(xkj ), Enk

(T (j−1)(nk+mk)pk)) ≤
1
nk
ε follows from strong non-uniform specification:

1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), Enk

(T (j−1)(nk+mk)pk))

=
1

Nk

Nk
∑

j=1

1

nk

nk
∑

l=1

d(f l(xkj ), f
l(T (j−1)(nk+mk)pk))

≤
1

Nk

Nk
∑

j=1

1

nk
ε =

1

nk
ε.

Using Lemma 4.1 (1) we deduce that

ρ(Etk(p), µk)

≤ ρ(Etk(p), Etk−tk−1
(pk)) + ρ(

1

Nk

Nk
∑

j=1

Enk
(xkj ), Etk−tk−1

(pk)) +
1

Nk

Nk
∑

j=1

ρ(Enk
(xkj ), µk)

≤ 2
tk − (tk − tk−1) + tk−1

tk
+ (

1

nk
ε+ 2θk) + δk.

Then lim supk→∞ ρ(Etk(p), µk) = 0. For other subsequences the strategy of the proof follows well known ideas
by constructing an appropriate convex sum of the measures µ1 and µ2. Here we omit the details. �

Then one can follow Step 3 and 4 same as the proof of Theorem A (1) to end the proof of Theorem A
(2), just in Step 4 replacing QGµ1,µ2(ǫ) by Gµ1,µ2 , replacing mi = niθ by mi = niθi, and replacing (5.10) by

≥ exp
{

(h∗−3γ)
1+θ0

n
}

. �
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6. Multifractal analysis

In this section we prove the corollaries of Theorem A to the multifractal analysis of Birkhoff averages for
continuous observables.

Proof of Corollary A. Let T : X → X be a continuous map of a compact metric space X and assume that
T satisfies the strong non-uniform specification property on ∆ ⊆ X . Let φ : X → R be a continuous function.

Given a ∈ R let D = {µ ∈ MT (∆)|
∫

φdµ = a}. To prove the Corollary A it is enough to prove that
htop(T,Rφ,a(T )) ≥ hµ(T ) for every µ ∈ D. Notice that Gµ,µ ⊆ Rφ,a(T ). Together with relation (2.4) in
Theorem A this implies that

htop(T,Rφ,a(T )) ≥ htop(T,Gµ,µ) ≥ hµ(T ).

This finishes the proof. �

Proof of Corollary B. Let T : X → X be a continuous map of a compact metric space X so that T has
non-uniform specification on ∆ ⊂ X , and let φ : X → R be a continuous function. Denote h = sup {hµ(T ) | µ ∈
MT (∆)}.

For any τ > 0, choose an invariant measure µ ∈ MT (∆) such that hµ(T ) > h − τ. Then we select a
number 0 < θ < 1 close to 1 such that θhµ(T ) > h − τ. By assumption, there exists ω ∈ MT (∆) such that
∫

φdµ 6=
∫

φdω. If ν = θµ + (1 − θ)ω then we observe that hν(T ) ≥ θhµ(T ) > h− τ and
∫

φdµ 6=
∫

φdν. Let
K = {tµ + (1 − t)ν| t ∈ [0, 1]}. Choose ǫ > 0 small enough such that if x ∈ X satisfies dHaus(VT (x),K) < ǫ
then VT (x) is not a singleton and

inf
m∈VT (x)

∫

φdm < sup
m∈VT (x)

∫

φdm. (6.1)

By relation (2.3) in Theorem A, reducing ǫ if necessary,

htop(T,QGµ,ν(ǫ)) ≥ min{hµ(T ), hν(T )} − τ > h− 2τ,

where QGµ,ν(ǫ) = {x ∈ X | dHaus(VT (x),K) < ǫ}. By (6.1), every x ∈ QGµ,ν(ǫ) belongs to Iφ(T ). Therefore
we conclude that

htop(T, Iφ(T )) ≥ htop(T,QGµ,ν(ǫ)) > h− 2τ.

Since τ was chosen arbitrary this completes the proof of the corollary. �

Proof of Corollary C. Let T : X → X be a continuous map of a compact metric space X and ∆ ⊆ X so
that T has non-uniform specification on ∆. Let φ : X → R be a continuous function. Since the item (2) is a
direct consequence of item (1) we only need to prove the later. Given a ∈ R and σ > 0 let

Dσ = {µ ∈ MT (∆)|

∫

φdµ ∈ (a− σ, a+ σ)}.

For any µ ∈ Dσ take ǫ > 0 small enough such that
∫

φdν ∈ (a− σ, a+ σ) whenever ν ∈ B(µ, ǫ) (here the ball is
determined by the metric ρ). To prove that htop(T,Rφ,a,σ(T )) ≥ hµ(T ) first notice that QGµ,µ(ǫ) ⊆ Rφ,a,σ(T ).
This property together with the estimate (2.3) of Theorem A yields

htop(T,Rφ,a,σ(T )) ≥ htop(T,QGµ,µ(ǫ)) ≥ hµ(T ).

The proof is now complete. �

7. Non-uniformly expanding maps

7.1. Hyperbolic times and exponential non-uniform specification. We first recall some properties of
hyperbolic times in the case of C1-maps on a compact Riemannian manifold X . A sufficiency criterium for the
existence of hyperbolic times is given as application of Pliss’ lemma.

Lemma 7.1. [2, Lemma 5.4] There exists constants θ > 0 and δ > 0 (depending only on T and c) such that if
x ∈ X\∪n T n(C) satisfies (2.6) and (2.7) then the following holds: for every large N ≥ 1 there exist a sequence
of integers 1 ≤ n1(x) < n2(x) < · · · < nl(x) ≤ N , with l ≥ θN so that

N−1
∏

j=N−k

‖DT (T j(x)−1‖ ≤ σ−k and distδ(T
N−k(x), C) > σbk. (7.1)

One of the main features of hyperbolic times is the following backward contraction property.
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Lemma 7.2. [2, Lemma 2.7] Given σ > 1 and δ > 0 there exists a constant δ1 = δ1(σ, δ, T ) > 0 such that if
n is a hyperbolic time for a point x then T n maps diffeomorphically the dynamical ball Bn(x, δ1) onto the ball
B(T n(x), δ1) around T

n(x) and radius δ1 and

d(T n−j(y), T n−j(z)) ≤ σ− j
2 d(T n(y), T n(z)) (7.2)

for every 1 ≤ j ≤ n and every y, z ∈ Bn(x, δ1). In particular

diamBn(x, δ1) ≤ σ−n
2 δ1 < σ−n

2 diam(X).

Given σ > 1, δ > 0, we say that x ∈M admits a non-lacunar sequence of (σ, δ)-hyperbolic times if (nk(x))k≥1

is a sequence of (σ, δ)-hyperbolic times and

lim
k→∞

nk+1(x)− nk(x)

nk(x)
= 0.

If the first hyperbolic time map is integrable then the sequence of hyperbolic times is almost everywhere well
defined and non-lacunar (see e.g. [29]).

7.2. Proof of Theorem B. The topological exactness assumption implies that for every δ > 0 there exists
Nδ ≥ 1 such that TNδ(B) = X for every ball B of radius δ. This fact plays a key role in the proof of the
exponential non-uniform specification property for a full measure set with respect to all probability measures
in M. Given σ > 1, δ > 0, let ∆δ,σ denote the set of points x ∈M that admit a non-lacunar sequences sequence
(nk(x))k≥1 of (σ, δ)-hyperbolic times. Since T is non-uniformly expanding then the set ∆ =

⋃

δ,σ>0 ∆δ,σ is

non-empty. Moreover, if x ∈ ∆δ,σ, 0 < ε < δ, n ≥ 1 is large and nk(x) < n < nk+1(x) are consecutive
(σ, δ)-hyperbolic times for x then Bnk+1

(x, ε) ⊂ Bn(x, ε) and

TNε+nk+1(Bnk+1
(x, ε)) = TNε(B(T nk+1(x), ε)) = X.

Then the map

p = pε,σ : ∆ε,σ → N

x 7→ p(x, n, ε)

defined as p(x, n, ε) := Nε + nk+1(x)− n verifies

lim sup
n→∞

p(x, n, ε)

n
≤ lim sup

k→∞

Nε + nk+1(x)− nk(x)

nk(x)
= 0

for every x ∈ ∆δ,σ (this is well defined at scale δ for all measures η ∈ Mσ,δ).
Since the previous limit is zero independently of the scale 0 < ε < δ, in order to complete the proof of the first

part of the proposition it remains to prove the strong non-uniform specification property holds with exponential
shadowing estimates. Given any x1, . . . , xm in ∆δ,σ, 0 < ε < δ, any positive integers n1, . . . ,mm ≥ 1 and
pi ≥ p(xi, ni, ε) we get that T pi+ni(Bni

(xi, ε)) = X for all 1 ≤ i ≤ m. Therefore there exists z ∈ Bn1(x1, ε)
such that

T n1+p1+···+ni−1+pi−1(z) ∈ Bni
(xi, ε)

for every 2 ≤ i ≤ k. In particular, relation (7.2) yields

d(T j(xi), T
j+n1+p1+···+ni−1+pi−1(y)) < εσ− 1

2 (ni−j)

for every 0 ≤ j ≤ ni and 1 ≤ i ≤ k. This proves the theorem. Indeed, given x1, . . . , xk ∈ ∆ let η1, . . . , ηm be
probability measures on M so that xi ∈ B(ηi) for every i, and take 0 < δ < min1≤i≤m δηi . �

Remark 7.1. While, in general, one cannot expect the scale δ in the proof of Theorem B to be taken uniform for
all points with some non-uniform expansion, the proof yields the following (stronger) exponential non-uniform
specification for all points in the basin of a finite number of ergodic expanding measures. More precisely, if the
T -invariant and ergodic probability measures (µi)

k
i=1 are expanding and ∆ =

⋃

1≤i≤k B(µi) then there exists
Λ > 0 so that T satisfies the strong exponential non-uniform specification with exponential λ.
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7.3. Cohomology criterium and closing lemma. In the present subsection, of independent interest, we
address the problem of determining criteria equivalent conditions for the relation

inf
µ∈MT (∆)

∫

φdµ < sup
µ∈MT (∆)

∫

φdµ

can be derived for non-uniformly expanding maps. Let ∆ ⊂ X be T -invariant and let VT (∆) denote the
accumulation points of the empirical measures (En(x))n≥1 for points x ∈ ∆. First we observe that φ is a
coboundary if the previous relation holds for all measures that are accumulation points of empirical measures
associated to points in ∆. More precisely,

Lemma 7.3. The following properties are equivalent:

(1) infµ∈VT (∆)

∫

φdµ < supµ∈VT (∆)

∫

φdµ

(2) φ /∈ Cob(∆)
(3) the sequence 1

n
Snφ is not (uniformly) convergent to c ∈ R on ∆.

Proof. Since the lemma mimics the ideas from Lemma 1.9 in [31] we shall omit the details. �

Observe that if ∆ is compact then VT (∆) = MT (∆) and relation (2.5) is equivalent to say that φ is not a
coboundary nor C0-accumulated by coboundaries. In general, the later conditions could be distinct. For that
reason we prove the denseness of periodic measures on MT (∆).

Proposition 7.1. Let T : X → X be a C1 local diffeomorphism and let ∆ ⊂ X be a T -invariant and dense
subset. Assume that there exist σ > 1 and δ > 0 so that every x ∈ ∆ has infinitely many (σ, δ)-hyperbolic times
and that T is topologically exact. Then every µ ∈ Me

T (∆) is accumulated (in the weak∗ topology) by periodic
measures.

Proof. By ergodic decomposition it is enough to prove that every µ ∈ Me
T (X) is approximated by periodic

measures in the weak∗ topology. Set L = supx∈X ‖DT (x)‖. Let σ > 1 and δ > 0 be so that every x ∈ ∆ has
infinitely many (σ, δ)-hyperbolic times.

Fix 0 < ε < δ arbitrary. By topological exactness, there exists Kε ≥ 1 so that TKε(B(z, ε)) = X for every
z ∈ X . Let N1(ε) ≥ 1 be so that

σ−N1(ε)LKε < 1. (7.3)

For any µ ∈ Me
T (∆) pick x∗ ∈ B(µ) ⊂ ∆ and let N2(x∗, ε) ≥ 1 be so that

ρ(En(x∗), µ) < ε ∀n ≥ N2(x∗, ε).

Set N = max{N1(ε), N2(x∗, ε)}. Using that x∗ ∈ ∆ has infinitely many hyperbolic times one can choose a
(σ, δ)-hyperbolic time nx∗

for x∗ so that nx∗
≥ N . In particular, T nx∗

+Kε(Bnx∗
(x∗, ε)) = X and there exists

B ⊂ Bnx∗
(x∗, ε) a domain of injectivity for T nx∗

+Kε in such a way that T nx∗
+Kε : B → Bnx∗

(x∗, ε) is a C1

diffeomorphism. It is not hard to check that

d(y, z) ≤ σ−nx∗LKεd(T nx∗
+Kε(y), T nx∗

+Kε(z))

≤ σ−NLKεd(T nx∗
+Kε(y), T nx∗

+Kε(z))

for every y, z ∈ B. Thus, the inverse branch G : Bnx∗
(x∗, ε) → B of T nx∗

+Kε is a contraction on a complete

metric space. By Banach’s fixed point theorem there exists a unique p ∈ Bnx∗
(x∗, ε) so that T nx∗

+Kε(p) = p.

Using that p ∈ Bnx∗
(x∗, ε), it follows that ρ(Enx∗

(x∗), Enx∗
(p)) ≤ ε and, by Lemma 4.1,

ρ(Enx∗
(x∗), Enx∗

+Kε
(p)) ≤ 2ε.

This proves that ρ(µ, Enx∗
+Kε

(p)) ≤ 3ε. Since 0 < ε < δ was taken arbitrary this proves that µ is accumulated
by periodic measures. This finishes the proof of the proposition. �

We observe that the periodic measures obtained in the previous proposition may be associated to periodic
points that could not be uniformly expanding. As a direct consequence of the previous proposition we obtain
the following:
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Corollary 7.1. If infµ∈MT (∆)

∫

φdµ < supµ∈MT (∆)

∫

φdµ then there are periodic points p1, p2 ∈ X of period
π1, π2 ≥ 1, respectively, so that

1

π1
Sπ1φ(p1) <

1

π2
Sπ2φ(p2). (7.4)

Conversely, if (7.4) holds for a pair of expanding periodic points p1, p2 ∈ ∆ for T then infµ∈MT (∆)

∫

φdµ <

supµ∈MT (∆)

∫

φdµ
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I. H. Poincaré - Analyse Non-Lineaire, 27:555–593, 2010.
[30] M. Viana. Multidimensional nonhyperbolic attractors. Inst. Hautes Études Sci. Publ. Math., 85:63–96, 1997.
[31] D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst. 25 (2010),

no. 1, 25-51.
[32] D. Thompson, Irregular sets, the β-transformation and the almost specification property, Transactions of the American Math-

ematical Society, 2012, 364 (10): 5395-5414.
[33] P. Walters, An introduction to ergodic theory, Springer-Verlag, 2001.
[34] X. Zhou and E. Chen. Multifractal analysis for the historic set in topological dynamical systems. Nonlinearity, 26, no. 7,

1975–1997, 2013.
18



Xueting Tian, School of Mathematical Science, Fudan University, Shanghai 200433, People’s Republic of China
E-mail address: xuetingtian@fudan.edu.cn

URL: http://homepage.fudan.edu.cn/xuetingtian
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