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Abstract. We study the specification property for partially hyperbolic dy-
namical systems. In particular, we show that if a partially hyperbolic diffeo-

morphism has two saddles with different indices, and the stable manifold of

one of these saddles coincides with the strongly stable leaf, then it does not
satisfy the specification property.

1. Introduction and statement of the main results

The purpose of this paper is to give a global perspective for the space of all
C1-diffeomorphisms satisfying the specification property. Let (X, d) be a compact
metric space, and let f : X → X be a homeomorphism. We say that f satisfies
the specification property if for each ε > 0, there is an integer N(ε) for which the
following is true: if I1, I2, · · · , Ik are pairwise disjoint intervals of integers with

min{|m− n| : m ∈ Ii, n ∈ Ij} ≥ N(ε)

for i 6= j and x1, · · · , xk ∈ X then there is a point x ∈ X such that d(f j(x), f j(xi)) ≤
ε for j ∈ Ii and 1 ≤ i ≤ k. It is well-known that every hyperbolic elementary set
of a diffeomorphism satisfies the specification property (see [9]). This property was
introduced by Bowen in [10] and roughly means that an arbitrary number of pieces
of orbits can be “glued” to obtain a real orbit that shadows the previous ones. This
is crucial in the study of the uniqueness of equilibrium states ([11]), large deviations
theory ([34]) and multifractal analysis ([30, 31]), which justifies the interest of many
researchers in several forms of specification ([20, 22, 23, 32, 33]).

In the nineties, Palis proposed a conjecture for a global view of dynamics which
has been a routing guide for many works in the last years, which we describe here in
the space C1-diffeomorphisms: either a diffeomorphism is uniformly hyperbolic or it
can be C1-approximated by a diffeomorphism that exhibits a homoclinic tangency
or a heteroclinic cycle. In rough terms, in the complement of uniform hyperbolicity
(open condition) the mechanisms that generate non-hyperbolicity in a dense way
are tangencies and cycles. We refer the reader to the surveys [5, 21] for reports
on the advances towards the conjecture and the current state of the conjecture for
C1-diffeomorphisms.

Palis conjecture and the C1-stability conjecture (c.f. [14, 18]) inspired the works
of many authors to approach such dichotomy in the space of C1-diffeomorphisms
concerning other important dynamical properties that are not necessarily C1-open,
namely, expansiveness, shadowing or specification properties. In [3, 17, 24, 27, 26]
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it was proved that the C1-interior of the set of all diffeomorphisms satisfying any
of these properties is contained in the uniformly hyperbolic ones.

In the case of specification, Sakai, the first and the third authors proved in [26]
that the C1-interior of the set of all diffeomorphisms satisfying the specification
property coincides with the set of all transitive Anosov diffeomorphisms. Moriyasu,
Sakai and the third author extended the above results to regular maps, and proved
that C1-generically, regular maps satisfy the specification property if and only if
they are transitive Anosov ([19]). A counterpart of these results for the time-
continuous setting was obtained more recently by Arbieto, Senos and Todero [4].
Owing to these results, the relation to hyperbolicity turns out to be clear.

The current interest in a global description of dynamical systems led us to wonder
if these properties can hold generically or at least densely in the complement of the
set of uniformly hyperbolic diffeomorphisms. An affirmative answer could permit
to use the specification property for diffeomorphisms C1-close to tangencies or
heteroclinic cycles. In this paper we will show that the answer is negative even in
the stronger context of partial hyperbolicity. This paper is largely motivated by
the results of Bonatti-Dı́az-Turcat ([7]) and Abdenur-Dı́az ([1]) on the shadowing
properties. So before stating our main theorems, we explain their main results.

Throughout, let M be a closed manifold with dimM ≥ 3, where dimE denotes
the dimension of E, and let Diff(M) be the space of C1-diffeomorphisms of a closed
C∞ manifoldM endowed with the C1-topology. Given f ∈ Diff(M), aDf -invariant
splitting TM = E ⊕ F is dominated if there is a constant k ∈ N such that

‖Dxf
k(u)‖

‖Dxfk(w)‖
<

1

2
,

for every x ∈ M and every pair of unitary vectors u ∈ E(x) and w ∈ F (x).
Generally, a Df -invariant splitting TM = E1 ⊕ · · · ⊕ Ek is dominated if for any
1 ≤ l ≤ k − 1, (E1 ⊕ · · · ⊕ El)⊕ (El+1 ⊕ · · · ⊕ Ek) is dominated.

A Df -invariant bundle E is uniformly contracting (resp. expanding) if there are
C > 0 and 0 < λ < 1 such that for every n > 0 one has ‖Dxf

n(v)‖ ≤ Cλn‖v‖
(resp. ‖Dxf

−n(v)‖ ≤ Cλn‖v‖) for all x ∈M and v ∈ E(x).
We say that a diffeomorphism f is partially hyperbolic (resp. strongly partially

hyperbolic) if there is a Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu such that
Es and Eu are uniformly contracting and uniformly expanding respectively, and
at least one of them is (resp. both of them are) not trivial. A diffeomorphism is
hyperbolic if it is strongly partially hyperbolic and Ec is trivial. We say that Ec is
the central direction of the splitting.

We say that f ∈ Diff(M) is transitive if there is x ∈ M whose orbit is dense in
M . A diffeomorphism f is robustly transitive if there is a C1-neighborhood U(f)
of f in Diff(M) such that any g ∈ U(f) is transitive. Denote by RNT the set of
robustly non-hyperbolic transitive diffeomorphisms in Diff(M), that is, the set of
diffeomorphisms f having a C1-neighborhood U(f) of f such that every g ∈ U(f)
is non-hyperbolic and transitive.

A diffeomorphism f ∈ Diff(M) satisfies the shadowing property if for any ε > 0
there exists δ > 0 such that for every sequence (xn)n∈Z of points in M satisfying
d(f(xn), xn+1) < δ (n ∈ Z), there exists x ∈ M so that d(fn(x), xn) < ε (n ∈ Z).
In other words, the orbit of x ε-shadows the δ-pseudo-orbit (xn)n∈Z. In [7], Bonatti,
Dı́az and Turcat proved the following theorem:

2



Theorem 1.1. [7, Theorem] Let f : M → M be a transitive diffeomorphism with
a strongly partially hyperbolic splitting on M with dimM = 3. Assume that
f has two hyperbolic periodic points p and q such that dim(W s(p)) = 2 and
dim(W s(q)) = 1. Then f does not satisfy the shadowing property.

Moreover, Abdenur and Dı́az showed the following:

Theorem 1.2. [1, Theorem 2] There is a C1-open and dense subset P in RNT
such that every f ∈ P does not satisfy the shadowing property.

As mentioned before, both the specification and shadowing properties reflect the
approachability of pseudo-orbits or finite pieces of orbits of the dynamical system
by true orbits. Although these two notions, even their C1-interior, do not coincide
in general (see [25, 26] for instance). So it is natural to consider the counterpart of
Theorem 1.1 and Theorem 1.2 for the setting of the specification property. Now,
we state our main result of this paper.

Theorem A. Let f : M →M be a diffeomorphism admitting a partially hyperbolic
splitting Es⊕Ec⊕Eu. Assume that there are two hyperbolic periodic points p and
q such that either dim Eu = dim Wu(p) < dim Wu(q) or dim Es = dim W s(q) <
dim W s(p). Then f does not satisfy the specification property.

Here Wu(p) (resp. W s(p)) denotes the unstable (resp. stable) manifold of p
defined as usual. We should emphasize that the holonomy map along the strong
unstable foliation plays a key role in the proof of Theorem A, which is the main
difference from that of Theorem 1.1.

Denote by SPH1(M) the set of all strongly partially hyperbolic diffeomorphisms
with one-dimensional central direction. We note that SPH1(M) is open in Diff(M).
In the case that the central direction Ec is one dimensional, any two hyperbolic
periodic points with different indices verify the previous assumptions. Hence, we
obtain from the previous result the following consequence.

Corollary 1. Let f ∈ SPH1(M) and suppose that there exist two hyperbolic pe-
riodic points p, q with different indices. Then f does not satisfy the specification
property.

Applying this corollary, we obtain the following consequence.

Corollary 2. There is a C1-open and dense subset P in RNT ∩ SPH1(M) such
that every f ∈ P does not satisfy the specification property.

In case of dimM = 3, we obtain the counterpart of Theorem 1.2 as follows.

Corollary 3. Suppose that dimM = 3. Then there is a C1-dense open subset P
in RNT so that every f ∈ P does not satisfy the specification property.

In conclusion, it can be said that the non-hyperbolic transitive diffeomorphisms
seldom have the specification property. This answer gives not only a global descrip-
tion of the space of diffeomorphisms as it enhances the need to consider, beyond
uniform hyperbolicity, weak forms of specification, such as nonuniform measure
theoretical versions of the specification or almost specification properties. One re-
maining interesting question is to understand which non-hyperbolic systems admit
weaker specification properties.

As an application of Theorem A, we also investigate some relation between hy-
perbolicity, specification property and presence of homoclinic tangencies. We say

3



that a diffeomorphism f exhibits a homoclinic tangency if f has a hyperbolic peri-
odic point whose stable and unstable manifolds have a non transverse intersection.
Very recently, it was proved [12] that any diffeomorphism f can be approximated
in Diff(M) by diffeomorphisms which exhibit a homoclinic tangency or by partially
hyperbolic diffeomorphisms. Inspired by this result, we show the following:

Corollary 4. Let f be a robustly transitive diffeomorphism which has a hyperbolic
periodic point with stable index one. Then one of the following properties holds:

(1) f is an Anosov diffeomorphism.
(2) f can be C1-approximated by a partially hyperbolic diffeomorphism which

does not satisfy the specification property.
(3) f can be C1-approximated by a diffeomorphism which exhibits a homoclinic

tangency.

We should emphasize that the third case in Corollary 4 cannot be omitted.
Indeed, in [8, §6], Bonatti and Viana constructed an open set O of Diff(T3) such
that for any f ∈ O:

(i) there is a Df -invariant dominated splitting TM = Eu ⊕ Ec into a 1-
dimensional strong unstable subbundle Eu and a 2-dimensional subbun-
dle Ec. Moreover, Ec is not uniformly hyperbolic and does not admit a
decomposition in invariant subbundles;

(ii) every strong unstable leaf of f is dense in T3, which implies that f is
transitive (and so f is also robustly transitive) and the whole space T3

coincides with the homoclinic class H(p) of some periodic point p.

Assume for a contradiction that no f ∈ O admits a homoclinic tangency. Then by
[12, Theorem 1.1], there exists a residual subset R in O so that for any g ∈ R and
p ∈ T3, H(p) admits a dominated splitting whose central direction Ec have a finest
dominated splitting Ec = Ec1 ⊕ Ec2 with dimEci = 1 for i = 1, 2, which contradicts
with the item (i). So, there is a diffeomorphism f ∈ O having the homoclinic
tangency. This in fact proves that there exists a dense subset D of O so that all
f ∈ D admit a homoclinic tangency.

2. Proof of Theorem A

In this section, we prove Theorem A. First, we rewrite the definition of the
specification property using the very useful notion of (closed) dynamical balls and
prove the preliminary lemma. Given x ∈ M , ε > 0, m,n ∈ Z with m ≤ n and
I = [m,n], set

BI(x, ε) = B[m,n](x, ε) = {y ∈M : d(f j(y), f j(x)) ≤ ε,m ≤ j ≤ n}.

If no confusion is possible, set Bn(x, ε) = B[0,n](x, ε) and B−n(x, ε) = B[−n,0](x, ε).
Then, the specification property can be written as follows: given ε > 0 there exists
a positive integer N = N(ε) ≥ 1 so that for any x1, . . . , xk ∈ M and intervals of
integers Ij = [mj , nj ] (1 ≤ j ≤ k) with mj+1 − nj ≥ N (1 ≤ j ≤ k − 1), it holds
that

k⋂
j=1

f−mj (BIj (xj , ε)) 6= ∅.
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In the case that p is a hyperbolic periodic point for f , there exists ε > 0 small
so that the local unstable set

Wu
ε (p) =

{
x ∈M : d(f−n(x), f−n(p)) ≤ ε for all n ≥ 0

}
=
⋂
n≥0

B−n(p, ε)

is the local unstable manifold at p with size ε. Analogously, the local stable set
W s
ε (p) =

⋂
n≥0Bn(p, ε) is the local stable manifold for some ε > 0. We refer the

reader to [15] and [29] for more details.

Lemma 2.1. Suppose that f : M → M satisfies the specification property. Then
for every hyperbolic periodic point p both the stable and unstable manifolds W s(p)
and Wu(p) are dense in M .

Proof. Given a hyperbolic periodic point p for f we prove that the unstable man-
ifold Wu(p) is dense in M , since the proof for the density of W s(p) is completely
analogous. Let us assume for simplicity that p is a fixed point, since otherwise just
consider fk where k is the period of p.

Let Wu
ε1(p) denote the local unstable manifold for some ε1 > 0. Take any point

x ∈ M and ε2 > 0. It is sufficient to show that there exists a point w ∈ M such
that d(x,w) ≤ ε2 and w ∈ Wu(p). We set ε := 1

2 min{ε1, ε2} and take an integer
L ≥ N(ε). Since f satisfies the specification property, for any n ≥ 1,

fL(B−n(p, ε)) ∩B(x, ε) 6= ∅,
where B(x, ε) stands for the closed ball of radius ε around x. Since the previous
intersection is a strictly decreasing family of closed sets, by compactness of M ,
there exists a point w ∈M such that

w ∈
∞⋂
n=1

fL(B−n(p, ε)) ∩B(x, ε).

Then we have d(w, x) ≤ ε2 and d(f−n(f−L(w)), f−n(p)) ≤ ε1 for any n ≥ 1. The
latter implies that w ∈ fL(Wu

ε1(p)) = fL(Wu
ε1(f−L(p))). Thus we have w ∈Wu(p)

and d(x,w) ≤ ε2, which proves the lemma. �

It follows from [19, Corollary 2] that C1-generically, non-hyperbolic diffeomor-
phisms do not have the specification property. On the other hand, maps with the
specification property could be dense in the complement of the uniformly hyper-
bolic diffeomorphisms. Our purpose in Theorem A is to prove that this is not the
case even for some partially hyperbolic dynamical systems.

Proof of Theorem A. Let f : M → M be a diffeomorphism admitting a partially
hyperbolic splitting Es ⊕ Ec ⊕ Eu and assume p and q are hyperbolic periodic
points for f satisfying dim Eu = dim Wu(p) < dim Wu(q) (the case that dim Es =
dim W s(q) < dim W s(p) is analogous).

Assume, by contradiction, that f satisfies the specification property. Then it
follows from [27, Proposition 2 (b)] that f is topologically mixing. Thus f has
neither sinks nor sources. In particular, dim Eu = dim Wu(p) > 0, which implies
that Eu is not trivial.

Let us recall a necessary result on the location of the the shadowing point in
unstable disks. For x ∈ Wu(p) and η > 0 we will consider the local unstable disk
around x in Wu(p) given by

γuη (x) := {z ∈Wu(p) : du(x, z) ≤ η}.
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Here du is the distance in Wu(p) induced by the Riemannian metric.

Proposition 2.2. [7, Proposition 3] There exists a small positive constant ε1 such
that for any ε ∈ (0, ε1) the following holds: if x ∈Wu(p) and d(f−n(z), f−n(x)) ≤ ε
for any n ≥ 1, then z ∈ γu4ε(x).

Then we are in a position to prove the next proposition, which is a key ingredient
in the proof of our main Theorem A.

Proposition 2.3. Let ε1 be as in Proposition 2.2. Then there exist η > 0, ε ∈
(0, ε1) with 4ε < η and a point x ∈Wu(p) such that

fN (γuη (x)) ∩W s
η (q) = ∅,

where N = N(ε) is as in the definition of the specification property.

Proof. Since Eu is not trivial, it is well known that the sub-bundle Eu is uniquely
integrable and hence we have a foliation Fu which are tangent to Eu, called the
strong unstable foliation (see [15]). As usual, let us denote by Fu(x) the leaf of the
foliation Fu that contains the point x. Then, Lemma 2.1 guarantees that Wu(p)
is dense in M . Given r > 0, let us consider the family

L(p) = {V (w) : w ∈ B(p, r)},
where V (w) is the connected component of Fu(w) ∩B(p, r) containing w. Choose
a local disk D′0 and η > 0 so small that D′0 is transverse to the family L(p), p ∈ D′0,
and for any open disk U contained in D′0, A(U) :=

⋃
z∈U Fuη (z) is homeomorphic

to U × [−η, η]dimEu

. Here we set

Fuη (z) := {w ∈ Fu(z) : du(z, w) ≤ η},

where du is the distance in Fu(z) induced in the Riemannian metric. We set
ε := min{η/5, ε1/2}.

Next, we choose a compact disk K such that W s
η (q) ⊂ K and K is transverse

to Eu. Since K is transverse to Eu then K ∩ fN (γuη (p)) consists of finitely many
points {x1, x2, · · · , xk}. Choose an open subdisk D0 ⊂ D′0 containing p such that
Ki ∩ Kj = ∅ if i 6= j. Here Ki is a connected component of K ∩ fN (A(D0))
containing xi, for 1 ≤ i ≤ k (see Figure 1).

For each 1 ≤ i ≤ k, we set Di = f−N (Ki) and consider a holonomy map
πi : Di → D0 which is defined by

πi(w) := v if {w} = Di ∩ Fu(v), (v ∈ D0).

By our choice of D0, · · · , Dk, for each 1 ≤ i ≤ k, πi is a homeomorphism. Since
W s
η (q) is a closed submanifold with dim W s

η (q) < dim Ki, Ki \W s
η (q) is open and

dense in Ki. Thus, if we set γsi := πi ◦ f−N (W s
η (q)), then D0 \ (

⋃k
i=1 γ

s
i ) is dense

and open in D0. So we can find an open subdisk U ⊂ D0 \ (
⋃k
i=1 γ

s
i ) (see Figure

2).
Since A(U) is homeomorphic to U × [−η, η]dimEu

and Wu(p) is dense in M , we
can find a point z′ ∈ A(U) ∩Wu(p). This implies that there exists a point x ∈ U
such that z′ ∈ Fuη (x). So x ∈ Wu(p) and Fuη (x) = γuη (x). By the choice of U , we

have fN (γuη (x)) ∩W s
η (q) = ∅, which proves the proposition. �

Now we continue the proof of Theorem A. For each ε > 0 let N = N(ε) ≥ 1 be
the integer as in the definition of the specification property. Then it follows from
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Figure 1

Figure 2

Proposition 2.3 that there are η > 0, ε ∈ (0, ε1) with 4ε < η and a point x ∈Wu(p)
such that

fN (γuη (x)) ∩W s
η (q) = ∅.

On the other hand, it follows from the specification property that for any n ≥ 1
one has fN (B−n(x, ε)) ∩ Bn(q, ε) 6= ∅ and consequently, using the compactness of
M , we have

∞⋂
n=1

fN (B−n(x, ε)) ∩Bn(q, ε) 6= ∅.

Therefore, there exists a point z ∈ M such that d(f−n(f−N (z)), f−n(x)) ≤ ε
for any n ≥ 0 and d(fn(z), fn(q)) ≤ ε. Thus it follows from Proposition 2.2
that z ∈ fN (γuη (x)) ∩W s

η (q), which is a contradiction. This finishes the proof of
Theorem A.

�
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3. Proofs of corollaries

Proof of Corollary 2. It follows from [1, Theorem 3.1] that there is an open and
dense subset P ′ in RNT such that every diffeomorphism in P ′ has two saddles
with different indices.

We set P = P ′ ∩SPH1(M). Then by the openness of SPH1(M), P is open and
dense in RNT ∩SPH1(M). Let f ∈ P. Then there are two saddles p and q so that
dimWu(p) < dimWu(q). Since dimEc = 1, we see that dimWu(p) = dimEu. So,
by Theorem A, we have Corollary 2. �

Proof of Corollary 3. Let M be a three dimensional closed manifold and RNT be
the set of robustly non-hyperbolic transitive diffeomorphisms. Then it follows from
[1, Theorem 3.1] that there is an open and dense subset P in RNT so that for any
f ∈ P such that every diffeomorphism in P has two saddles with different indices.

Since f ∈ P is robustly transitive, it follows from [13] that f has a partially
hyperbolic splitting Eu⊕Ec⊕Es. Thus, the existence of two saddles with different
indices, together with Theorem A implies Corollary 3. �

Proof of Corollary 4. Let f be a robustly transitive diffeomorphism which has a
hyperbolic periodic point p with stable index one. Let U1 be a C1-neighborhood
of f such that for g ∈ U1, g is transitive and the continuation p(g) of the periodic
point p, with stable index one, can be defined. By [1, Lemma 2.5], there exists a
residual subset J of U1 such that for all g ∈ J , the homoclinic class of p(g) is the
whole ambient manifold M .

Let us assume that (1) and (3) do not hold, and we will prove (2). Since (3) does
not occur, i.e. f is contained in a C1-open set U2 ⊂ U1 such that any g ∈ U2 does
not exhibit a homoclinic tangency. By [12, Theorem 1.1], we can take a residual
subset G of U2 such that g ∈ G has a dominated splitting Es ⊕ Ec1 ⊕ · · ·Eck ⊕ Eu
such that

• Es is uniformly contracting, and Eu is uniformly expanding. (Here Es

and/or Eu might be trivial.)
• each Eci is one dimensional (i = 1, · · · , k).

We may assume that G ⊂ U2 ∩ J . We claim that Es is one dimensional. Indeed,
since the stable index of p(g) is 1, the dimension of Es is smaller than or equal to 1.
On the other hand, since g ∈ G is robustly transitive, by [6, Theorems 2 and 4], g
has its finest dominated splitting E1⊕E2⊕· · ·⊕Ek which is volume hyperbolic, i.e.
there is n ∈ N such that the derivative of gn uniformly contracts the volume in E1

and uniformly expands the volume in Ek. Hence, if Es was trivial, then Ec1 = E1

would be uniformly contracting because dimEc1 = 1, which is a contradiction. This
proves our claim.

Since f is not an Anosov diffeomorphism, we can take h ∈ U2 arbitrarily close to
f , which has a hyperbolic periodic point q with stable index different from that of
p. Since this is an open condition, we may indeed assume without loss of generality
that h ∈ G. Clearly, h satisfies the assumptions of Theorem A and so does not
satisfy the specification property. This finishes the proof of the corollary. �
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